Physique > Accueil > Entropie : thermodynamique – énergie – environnement – économie > Numéro 1 > Article
Jean Argouarc’h
Received : 25 April 2022 / Accepted : 17 June 2022
Publié le 27 juin 2022 DOI : 10.21494/ISTE.OP.2022.0856
Des systèmes physiques matérialisant un bit de mémoire ont récemment fait l’objet d’expériences pour explorer le lien entre l’information et l’entropie ou pour réaliser des démons de Maxwell. Qu’il s’agisse de systèmes microscopiques (électron unique, molécule) ou mésoscopiques (bille de verre, particule colloïdale, nano-aimant), leurs changements d’état sont le résultat de transitions élémentaires provoquées par les fluctuations thermodynamiques ou par un effet tunnel quantique. Les équations probabilistes de ces transitions permettent d’établir directement les formules d’échange d’énergie entre la mémoire, la source d’énergie qui en contrôle l’état et le thermostat qui l’entoure, en évitant un détour par la théorie de l’information. La théorie qui en résulte explique l’ensemble des résultats expérimentaux des mémoires bistables et des mémoires à bascule. Elle montre notamment un découplage partiel entre le travail fourni par la source d’énergie et la chaleur échangée avec le thermostat au cours du changement d’état, ainsi que l’influence de la vitesse du processus sur les énergies en jeu et sur la dissipation thermique. Elle met au jour le paradoxe de la temporalité de l’entropie, qui avait été évoqué par Landau et Lifshitz, à savoir que l’entropie n’est pas indépendante du temps, plus précisément que la valeur de l’entropie à cette échelle d’énergie dépend de la durée retenue pour son évaluation. Elle explique pourquoi il est possible de créer ou d’effacer un bit d’information avec une énergie largement inférieure à Kb T log2, la limite de Landauer, et elle résout complètement l’énigme de la machine de Szilard.
Physical systems materializing a bit of memory have recently been the subject of experiments to explore the link between information and entropy or to realize Maxwell’s demons. Whether microscopic (single electron, molecule) or mesoscopic (glass bead, colloidal particle, nano-magnet) systems, their changes of state are the result of elementary transitions caused by thermodynamic fluctuations or by quantum tunnelling. From the probabilistic equations of these transitions we deduce directly the formulas of energy exchanges between the memory, the energy source which controls its state and the thermostat which surrounds it, avoiding a detour by the theory of information. The resulting theory explains all the experimental results of bistable and tilt memories. In particular, it shows a partial decoupling between the work provided by the energy source and the heat exchanged with the thermostat during the change of state, as well as the influence of the speed of operations on the energies involved and on the thermal dissipation. It brings to light the paradox of the temporality of entropy, which had been evoked by Landau and Lifshitz, namely that entropy is not independent of time, more precisely that the value of entropy at this energy scale depends on the duration retained for its evaluation. It explains why it is possible to create or to delete a bit of information with an energy well below Kb T log2, the Landauer limit, and it completely solves the enigma of the Szilard’s machine.
Entropie théorie de l’information mémoire bistable mémoire à bascule démon de Maxwell limite de Landauer machine de Szilard temporalité de l’entropie
Entropy information theory bistable memory tilt memory Maxwell’s demon Landauer limit Szilard’s machine entropy temporality