Ingénierie et systèmes > Accueil > Incertitudes et fiabilité des systèmes multiphysiques > Numéro 2 > Article
Rabii El Maani
LSMI - ENSAM Meknès
Maroc
Soufiane Elouardi
LIMII - FST Settat
Maroc
Bouchaïb Radi
LIMII - FST Settat
Maroc
Abdelkhalek El Hami
INSA de Rouen
Publié le 14 décembre 2018 DOI : 10.21494/ISTE.OP.2018.0306
L’aérodynamique est définie comme la science de la manipulation d’un fluide qui est souvent l’air en interaction avec une structure. Lors de la simulation de l’écoulement au-dessus des pales aérodynamiques, la transition d’un écoulement laminaire à un écoulement turbulent joue un rôle important dans la détermination des caractéristiques d’écoulement et dans la quantification des
performances de la surface portante telles que la portance et la traînée. Ces flux fluidiques sont soumis à des contraintes visqueuses et à une inertie qui produit des fluctuations désordonnées. La turbulence affecte donc le comportement du flux aérodynamique ainsi que la structure en interaction avec un fluide pour des nombres de Reynolds élevés. En effet, il est nécessaire de contrôler ces flux turbulents dans ce domaine afin de donner une bonne conception de la structure. Plusieurs modèles de turbulence ont été développés pour faciliter le calcul des grandeurs caractéristiques afin d’optimiser la simulation des écoulements turbulents en aérodynamique. Dans cet article, nous avons présenté une validation d’une simulation numérique d’un écoulement transsonique 3D sur l’aile ONERA M6 pour laquelle les résultats numériques, réalisés avec ANSYS/FLUENT ©, seront comparés à des données expérimentales et à des résultats numériques de la NASA portant sur le coefficient de pression (Cp) le long des surfaces des ailes supérieures et inférieures. Le flux a été obtenu en résolvant les équations de conservation de la masse et de la quantité de mouvement en régime permanent, combinées à l’un des cinq modèles de turbulence (Spalart-Allmaras (S-A), k-ε standard, k-ε RNG, k-ω standard et k-ω SST) visant à la validation de ces modèles par la comparaison des prévisions et des mesures expérimentales en champ libre pour l’aile sélectionnée.
Aerodynamics is defined as the science of handling a fluid that is often the air interacting with a structure. When simulating the flow over airfoils, transition from laminar to turbulent flow plays an important role in determining the flow features and in quantifying the airfoil performance such as lift and drag. These fluidic flows are subjected to viscous stresses and inertia which produces disordered fluctuations, so turbulence affects the behavior of the aerodynamic flow as well as the structure interacting with the fluid in a range of high Reynolds, indeed, it is obliged to control these turbulent flows in this area in order to give a good design of the structure. Several models of turbulence have been developed to facilitate the calculation of characteristic quantities to optimize the simulation of turbulent flows in aerodynamics. In this paper, we carried out a validation of a numerical simulation of a 3D transonic flow over the ONERA M6 wing for which the numerical results, performed using ANSYS/FLUENT©, will be compared with experimental data and NASA CFD results consisting on the pressure coefficient (Cp) along the upper and lower wing surfaces. The flow was obtained by solving the steady-state governing equations of continuity and momentum conservation combined with one of five turbulence models (Spalart-Allmaras (S-A), standard k-ε, k-ε RNG, standard k-ω and k-ω SST) aiming to the validation of these models through the comparison of the predictions and the free field experimental measurements for the selected wing.