Mathématiques > Accueil > Avancées en Mathématiques Pures et Appliquées > Numéro spécial : AUS-ICMS 2020 > Article
R. Duduchava
The University of Georgia
Publié le 28 juillet 2021 DOI : 10.21494/ISTE.OP.2021.0697
Main objective of the present paper is to prove solvability of the Dirichlet, Neumann and Mixed boundary value problems for an anisotropic Laplace-Beltrami equation on a hypersurface $$${C}$$$ with the Lipschitz boundary $$${\Gamma=∂C}$$$ in the classical $$${𝕎^1(C)}$$$ space setting.
Main objective of the present paper is to prove solvability of the Dirichlet, Neumann and Mixed boundary value problems for an anisotropic Laplace-Beltrami equation on a hypersurface $$${C}$$$ with the Lipschitz boundary $$${\Gamma=∂C}$$$ in the classical $$${𝕎^1(C)}$$$ space setting.
Hypersurface with Lipschitz boundary Anisotropic Laplace Beltrami equation Dirichlet BVP Neumann BVP Mixed type BVP Günter’s derivatives Lax-Milgram lemma Bessel potential spaces
Hypersurface with Lipschitz boundary Anisotropic Laplace Beltrami equation Dirichlet BVP Neumann BVP Mixed type BVP Günter’s derivatives Lax-Milgram lemma Bessel potential spaces