exit

Mathématiques   > Accueil   > Avancées en Mathématiques Pures et Appliquées   > Numéro spécial : AUS-ICMS 2020   > Article

L’équation de Laplace-Beltrami sur une hypersurface avec un bord de Lipschitz

Laplace-Beltrami equation on a hypersurface with Lipschitz boundary


R. Duduchava
The University of Georgia



Publié le 28 juillet 2021   DOI : 10.21494/ISTE.OP.2021.0697

Résumé

Abstract

Mots-clés

Keywords

Main objective of the present paper is to prove solvability of the Dirichlet, Neumann and Mixed boundary value problems for an anisotropic Laplace-Beltrami equation on a hypersurface $$${C}$$$ with the Lipschitz boundary $$${\Gamma=∂C}$$$ in the classical $$${𝕎^1(C)}$$$ space setting.

Main objective of the present paper is to prove solvability of the Dirichlet, Neumann and Mixed boundary value problems for an anisotropic Laplace-Beltrami equation on a hypersurface $$${C}$$$ with the Lipschitz boundary $$${\Gamma=∂C}$$$ in the classical $$${𝕎^1(C)}$$$ space setting.

Hypersurface with Lipschitz boundary Anisotropic Laplace Beltrami equation Dirichlet BVP Neumann BVP Mixed type BVP Günter’s derivatives Lax-Milgram lemma Bessel potential spaces

Hypersurface with Lipschitz boundary Anisotropic Laplace Beltrami equation Dirichlet BVP Neumann BVP Mixed type BVP Günter’s derivatives Lax-Milgram lemma Bessel potential spaces