exit

Mathématiques   > Accueil   > Avancées en Mathématiques Pures et Appliquées   > Numéro

Vol 15 - Numéro 1 (Janvier 2024)

Avancées en Mathématiques Pures et Appliquées


Liste des articles

Sur la compression des opérateurs de Stant Toeplitz généralisés à H2(𝕋n)
Gopal Datt, Shesh Kumar Pandey

In the paper, we introduce the notion of compression of generalized slant Toeplitz operators to the Hardy space of $$$n$$$-dimensional torus $$$\mathbb{T}^n$$$. It deals with characterizations of introduced operator with specific as well as general symbols. Certain algebraic and structural properties of considered operators are also investigated. Finally, we discuss few results related to essentially $$$k^{th}$$$-order $$$\lambda$$$-slant Toeplitz operator.


Quelques identités algébriques dans les quasi-anneaux 3-premiers
Adel En-guady, Abdelkarim Boua, Abderrahmane Raji

Dans ce travail, nous étudions la commutativité des quasi-anneaux 3-premiers satisfaisant certaines identités différentielles sur des idéaux de Jordan impliquant certaines applications additives. Certains résultats bien connus caractérisant la commutativité des quasi-anneaux 3-premiers par l’action des dérivations et des multiplicateurs à gauche ont été étendus aux multiplicateurs à droite et aux dérivations généralisées à gauche. De plus, nous avons enrichi cet article par un exemple qui montre la nécessité de la 3-primalité mentionnée dans les hypothèses de nos théorèmes.


Diffusion d’énergie pour un INLS de type HARTREE 2D
Tarek Saanouni, Radhia Ghanmi

This paper studies the asymptotic behavior of energy solutions to the focusing non-linear generalized Hartree equation
$$$i u_t+\Delta u=-|x|^{-\varrho}|u|^{p-2}(\mathcal J_\alpha *|\cdot|^{-\varrho}|u|^p)u,\quad \varrho>0,\quad p\geq2.$$$
Here, $$$u:=u(t,x)$$$, where the time variable is $$$t \in ℝ$$$ and the space variable is $$$x\inℝ^2$$$.
The source term is inhomogeneous because $$$\varrho > 0$$$. The convolution with the Riesz-potential $$$\mathcal J_\alpha:=C_\alpha|\cdot|^{\alpha-2}$$$ for certain $$$0 < \alpha < 2$$$ gives a non-local Hartree type non-linearity. Taking account of the standard scaling invariance, one considers the inter-critical regime $$$1 + \frac{2-2\varrho + \alpha}2 < p < \infty$$$. It is the purpose to prove the scattering under the ground state threshold. This naturally extends the previous work by the first author for space dimensions greater than three (Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations, Potential Anal. (2021)). The main difference is due to the Sobolev embedding in two space dimensions $$$H^1(ℝ^2)\hookrightarrow L^r(ℝ^2)$$$, for all $$$2 \leq r < \infty$$$. This makes any exponent of the source term be energy subcritical, contrarily to the case of higher dimensions. The decay of the inhomogeneous term $$$|x|^{-\varrho}$$$ is used to avoid any radial assumption. The proof uses the method of Dodson-Murphy based on Tao’s scattering criteria and Morawetz estimates.


Sur les solutions des equations de type Fermat quadratiques dans ℂ2 engendrées par des opérateurs différentiels C-SHIFT d’ordre un
Jhuma Sarkar, Abhijit Banerjee

This article is devoted to explore various forms of transcendental entire solution of different quadratic trinomials generated by first order linear c-shift operator. We also investigate the forms of solutions of certain quadratic trinomials under linear and mixed partial differential operators. Our paper improves the results of Li-Xu [Axioms, 126(10)(2021), 1-19] in two directions. In addition, in a corollary, deducted from one of our main result, we extend a result of Zhang et al. [ Aims Math., 7(2022), 11597-11613]. A series of examples have been exhibited to justify the existence and forms of transcendental entire solution of such equations. In the last section of the paper we have put a relevant question for future research.