exit

Mathématiques   > Accueil   > Avancées en Mathématiques Pures et Appliquées   > Numéro 1 (Janvier 2022)   > Article

Contrôle optimal d’une diffusion fractionnée Problème de Sturm-Liouville sur un graphe étoile

Optimal control of a fractional diffusion Sturm-Liouville problem on a star graph


Pasquini Soh Fotsing
University of Buea
Cameroon



Publié le 11 janvier 2022   DOI : 10.21494/ISTE.OP.2021.0757

Résumé

Abstract

Mots-clés

Keywords

This paper is devoted to parabolic fractional boundary value problems involving fractional derivative of Sturm-Liouville type. We investigate the existence and uniqueness results on an open bounded real interval, prove the existence of solutions to a quadratic boundary optimal control problem and provide a characterization via optimality system. We then investigate the analogous problems for a parabolic fractional Sturm-Liouville problem on a star graph with mixed Dirichlet and Neumann boundary controls.

This paper is devoted to parabolic fractional boundary value problems involving fractional derivative of Sturm-Liouville type. We investigate the existence and uniqueness results on an open bounded real interval, prove the existence of solutions to a quadratic boundary optimal control problem and provide a characterization via optimality system. We then investigate the analogous problems for a parabolic fractional Sturm-Liouville problem on a star graph with mixed Dirichlet and Neumann boundary controls.

Rieman-Liouville fractional derivative Caputo fractional derivative fractional integral Sturm-Liouville equations boundary value problem optimal control optimality system

Rieman-Liouville fractional derivative Caputo fractional derivative fractional integral Sturm-Liouville equations boundary value problem optimal control optimality system