Mathematics > Home > Advances in Pure and Applied Mathematics > Issue 4 (September 2021) > Article
Amel Boudiaf
University of setif
Algeria
Salah Drabla
University of setif
Algeria
Published on 6 September 2021 DOI : 10.21494/ISTE.OP.2021.0723
In this work we establish a general decay rate for a nonlinear viscoelastic wave equation with boundary dissipation where the relaxation function satisfies $$$g^{\prime }\left( t\right) \leq -\xi \left( t\right) g^{p} % \left( t\right) , t\geq 0, 1\leq p\leq \frac{3}{2}.$$$ This work generalizes and improves earlier results in the literature.
In this work we establish a general decay rate for a nonlinear viscoelastic wave equation with boundary dissipation where the relaxation function satisfies $$$g^{\prime }\left( t\right) \leq -\xi \left( t\right) g^{p} % \left( t\right) , t\geq 0, 1\leq p\leq \frac{3}{2}.$$$ This work generalizes and improves earlier results in the literature.
Viscoelastic General decay Relaxation function Dissipation Wave equation
Viscoelastic General decay Relaxation function Dissipation Wave equation