Mathématiques > Accueil > Avancées en Mathématiques Pures et Appliquées > Numéro
Let R ⊂ T be an extension of integral domains and ∗ be a semistar operation stable of finite type on R. We define a semistar operation ∗1 on T in the following way : for each nonzero T-submodule E of the quotient field K1 of T, let E∗1 = ∪ {E :K1 JT | J ∈ $$$\mathcal{F}$$$∗}, where K1 denotes the quotient field of T and $$$\mathcal{F}$$$∗ the localizing system associated to ∗. In this paper we investigate the basic properties of ∗1. Moreover, we show that the map $$$\varphi$$$ which associates to a semistar operation ∗ stable and of finite type on R, the semistar operation ∗1 is continuous. Furthermore, we give sufficient conditions for $$$\varphi$$$ to be a homeomorphism.
We prove that the initial value problem with small data for the asymptotically flat spherically symmetric Einstein-Vlasov-Maxwell system admits the global in time solution in the case of the non zero shift vector. This result extends the one already known for chargeless case.
2020
Volume 20- 11
Numéro 1 (Mai 2020)2021
Volume 21- 12
Numéro 1 (Janvier 2021)2022
Volume 22- 13
À paraître2023
Volume 23- 14
Numéro 1 (Janvier 2023)