exit

Mathématiques   > Accueil   > Avancées en Mathématiques Pures et Appliquées   > Numéro

Vol 13 - À paraître

Avancées en Mathématiques Pures et Appliquées


Articles parus

[FORTHCOMING] Les fonctions de Weyl presque automorphes et applications

In this paper, we reconsider the notion of a Weyl p-almost automorphic function introduced by S. Abbas [1] in 2012 and propose several new ways for introduction of the class of Weyl p-almost automorphic functions (1 ⩽ p < ∞). We first analyze the introduced classes of Weyl p-almost automorphic functions of type 1, jointly Weyl p-almost automorphic functions and Weyl p-almost automorphic functions of type 2 in the one-dimensional setting. After that, we introduce and analyze generalizations of these classes in the multi-dimensional setting, working with general Lebesgue spaces with variable exponents. We provide several illustrative examples and applications to the abstract Volterra integro-differential equations.


[FORTHCOMING] Existence globale de solutions au système sphériquement symétrique de Einstein-Vlasov-Maxwell

We prove that the initial value problem with small data for the asymptotically flat spherically symmetric Einstein-Vlasov-Maxwell system admits the global in time solution in the case of the non zero shift vector. This result extends the one already known for chargeless case.


[FORTHCOMING] Existence et multiplicité de solution pour l’équation α(x)-Kirchhoff à poids indéfinis

In this paper, we investigate the existence of at least three weak solutions for a class of nonlocal elliptic equations with Navier boundary value conditions. The proof of our result uses the basic theory and critical point theory of variable exponential Lebesgue Sobolev spaces. Moreover a generalization of Corollary 1.1 in [21] is obtained.


[FORTHCOMING] Caractérisation de sous-espaces vectoriels fermés des espaces de Morrey et approximation

Let $$$1\leq q\leq\alpha < \infty. \left\{(L^{q}, l^{p})^{\alpha}(\mathbb{R}^d):\alpha\leq p\leq\infty \right\}$$$ is a nondecreasing family of Banach spaces such that the Lebesgue space is $$$L^{\alpha}(\mathbb{R}^d)$$$ its minimal element and the classical Morrey space $$$\mathcal{M}_{q}^{\alpha}(\mathbb{R}^d)$$$ is its maximal element. In this note we investigate some closed linear subspaces of $$$(L^{q}, l^{p})^{\alpha}(\mathbb{R}^d)$$$. We give a characterization of the closure in $$$(L^{q}, l^{p})^{\alpha}(\mathbb{R}^d)$$$ of the set of all its compactly supported elements and study the action of some classical operators on it. We also describe the closure in $$$(L^{q}, l^{p})^{\alpha}(\mathbb{R}^d)$$$ of the set $$$\mathcal{C}_{\rm{c}}^{\infty}(\mathbb{R}^d)$$$ of all infinitely differentiable and compactly supported functions on $$$\mathbb{R}^{d}$$$ as an intersection of other linear subspaces of $$$(L^{q}, l^{p})^{\alpha}(\mathbb{R}^d)$$$ and obtain the weak density of $$$\mathcal{C}_{\rm{c}}^{\infty}(\mathbb{R}^d)$$$ in some of these subspaces. We establish a necessary condition on a function $$$f$$$ in order that its Riesz potential $$$I_{\gamma}(|f|) \;(0<\gamma<1)$$$ be in a given Lebesgue space.