exit

Mathematics   > Home   > Advances in Pure and Applied Mathematics   > Issue 3 (Special AUS-ICMS 2020)   > Article

Maximum principles and overdetermined problems for Hessian equations

Principes du maximum et problèmes surdéterminés des équations Hessiennes


Cristian Enache
American University of Sharjah
UAE

Monica Marras
University of Cagliari
Italy

Giovanni Porru
University of Cagliari
Italy



Published on 28 July 2021   DOI : 10.21494/ISTE.OP.2021.0701

Abstract

Résumé

Keywords

Mots-clés

In this article we investigate some Hessian type equations. Our main aim is to derive new maximum principles for some suitable P-functions, in the sense of L.E. Payne, that is for some appropriate functional combinations of $$${u(x)}$$$ and its derivatives, where $$${u(x)}$$$ is a solution of the given Hessian type equations. To find the most suitable P-functions, we first investigate the special case of a ball, where the solution of our Hessian equations is radial, since this case gives good hints on the best functional to be considered later, for general domains. Next, we construct some elliptic inequalities for the well-chosen P-functions and make use of the classical maximum principles to get our new maximum principles. Finally, we consider some overdetermined problems and show that they have solutions when the underlying domain has a certain shape (spherical or ellipsoidal).

In this article we investigate some Hessian type equations. Our main aim is to derive new maximum principles for some suitable P-functions, in the sense of L.E. Payne, that is for some appropriate functional combinations of $$${u(x)}$$$ and its derivatives, where $$${u(x)}$$$ is a solution of the given Hessian type equations. To find the most suitable P-functions, we first investigate the special case of a ball, where the solution of our Hessian equations is radial, since this case gives good hints on the best functional to be considered later, for general domains. Next, we construct some elliptic inequalities for the well-chosen P-functions and make use of the classical maximum principles to get our new maximum principles. Finally, we consider some overdetermined problems and show that they have solutions when the underlying domain has a certain shape (spherical or ellipsoidal).

Monge-Ampère equations Hessian Equations maximum principles overdetermined problems

Monge-Ampère equations Hessian Equations maximum principles overdetermined problems