Mathématiques > Accueil > Revue
Avancées en mathématiques pures et appliquées est une revue scientifique internationale de mathématiques créée par la Société des Mathématiques de Tunisie (SMT). Elle publie des articles en mathématiques pures et appliquées. En particulier, dans toutes les branches de l’analyse, l’analyse harmonique appliquée (aspects mathématiques du traitement du signal, méthodes d’analyse temps-fréquence, principes d’incertitude, théorie de l’échantillonnage), équations aux dérivées partielles, équations différentielles ordinaires, approximations et développements, physique mathématique, systèmes dynamiques, aspects mathématiques et numériques des problèmes inverses, statistiques, combinatoire et théorie des probabilités.
2023 Impact factor : 0.5
5 Years Impact Factor : 0.6
Cite Score : 0.7
MCQ : 0.4
Scimago Journal Rank : 0.285
Source Normalized Impact Per Paper : 0.381
h-index : 16
Référencement
Conseil scientifique
Saloua AOUADI
Hajer BAHOURI
Sami BARAKET
Heinrich BEGEHR
Leila BEN ABDELGHANI
Aline BONAMI
Youssef BOUDABBOUS
Jacques FARAUT
Léonard GALLARDO
Hichem HAJAIEJ
Noomen JARBOUI |
Elyès JOUINI
Toshiyuki KOBAYASHI
Yvon MADAY
Fethi MAHMOUDI
Mohamed MAJDOUB
Abdenacer MAKHLOUF
Habib MARZOUGUI
Sami MUSTAPHA
Mark PEIGNE
Vicentiu RADULESCU
Lionel SCHWARTZ
Hatem ZAAG |
Advances in Pure and Applied Mathematics is an international mathematics journal launched by the Tunisian Mathematical Society (SMT). It welcomes submissions from the entire field of pure and applied mathematics, including : all branches of analysis, applied harmonic analysis (mathematical aspects of signal processing, time-frequency analysis methods, uncertainty principles, sampling theory), partial differential equations, ordinary differential equations, approximations and expansion, mathematical physics, dynamic systems, mathematical and numerical aspects of inverse problems, statistics, probability theory.
2023 Impact factor : 0.5
5 Years Impact Factor : 0.6
Cite Score : 0.7
MCQ : 0.4
Scimago Journal Rank : 0.285
Source Normalized Impact Per Paper : 0.381
h-index : 16
Abstracting & Indexing
Scientific Board
Saloua AOUADI
Hajer BAHOURI
Sami BARAKET
Heinrich BEGEHR
Leila BEN ABDELGHANI
Aline BONAMI
Youssef BOUDABBOUS
Jacques FARAUT
Léonard GALLARDO
Hichem HAJAIEJ
Noomen JARBOUI |
Elyès JOUINI
Toshiyuki KOBAYASHI
Yvon MADAY
Fethi MAHMOUDI
Mohamed MAJDOUB
Abdenacer MAKHLOUF
Habib MARZOUGUI
Sami MUSTAPHA
Mark PEIGNE
Vicentiu RADULESCU
Lionel SCHWARTZ
Hatem ZAAG |
Volume 24- 15
Numéro 1 (Janvier 2024)Volume 23- 14
Numéro 1 (Janvier 2023)Volume 22- 13
Numéro 1 (Janvier 2022)Let $$$G=(V,E)$$$ and $$$G'=(V,E')$$$ be two digraphs, $$$(\leq 5)$$$-hypomorphic up to complementation, and $$$U:=G\dot{+} G'$$$ be the boolean sum of $$$G$$$ and $$$G'$$$. The case where $$$U$$$ and $$$\overline U$$$ are both connected was studied by the authors and B.Chaari giving the form of the pair$$$\{G, G'\}$$$. In this paper we study the case where $$$U$$$ is not connected and give the morphology of the pair $$$\{G_{\restriction {V({\mathcal C})}},G'_{\restriction {V({\mathcal C})}}\}$$$ whenever $$$C$$$ is a connected component of $$$U$$$.
We use pointwise Kan extensions to generate new subcategories out of old ones. We investigate the properties of these newly produced categories and give sufficient conditions for their cartesian closedness to hold. Our methods are of general use. Here we apply them particularly to the study of the properties of certain categories of fibrewise topological spaces. In particular, we prove that the categories of fibrewise compactly generated spaces, fibrewise sequential spaces and fibrewise Alexandroff spaces are cartesian closed provided that the base space satisfies the right separation axiom.
In this paper we consider a class of nonlocal parabolic equations without uniqueness using a new framework developed by Cheskidov and Lu which called evolutionary system. We first prove the existence of weak solutions by using the compactness method. However, the Cauchy problem can be non-unique and we also give a sufficient condition for uniqueness. Then we use the theory of evolutionary system to investigate the asymptotic behavior of weak solutions via attractors and its properties. The novelty is that our results extend and improve the previous results and it seems to be the first results for this kind of system via using evolutionary systems.
Let $$$G$$$ be a permutation group on a set $$$\Omega$$$ with no fixed points in $$$\Omega$$$, and let $$$m$$$ be a positive integer. If for each subset $$$\Gamma$$$ of $$$\Omega$$$ the size $$$\Gamma^{g}-\Gamma|$$$ is bounded, for $$$g\in G$$$, the movement of $$$g$$$ is defined as move $$$(g):=\max{|\Gamma^{g}-\Gamma|}$$$ over all subsets $$$\Gamma$$$ of $$$\Omega$$$, and move $$$(G)$$$ is defined as the maximum of move $$$(g)$$$ over all non-identity elements of $$$g\in G$$$. Suppose that $$$G$$$ is not a 2-group. It was shown by Praeger that $$$|\Omega|\leqslant\lceil\frac{2mp}{p-1}\rceil+t-1$$$, where $$$t$$$ is the number of $$$G$$$-orbits on $$$\Omega$$$ and $$$p$$$ is the least odd prime dividing $$$|G|$$$. In this paper, we classify all permutation groups with maximum possible degree $$$|\Omega|=\lceil\frac{2mp}{p-1}\rceil+t-1$$$ for $$$t=2$$$, in which every non-identity element has constant movement $$$m$$$.
It is shown that the collection of all topologies on a given set $$$X$$$ coincide with the set of subsemirings of the power set $$$\mathcal{P}(X)$$$ (equipped with union and intersection) if and only if $$$X$$$ is finite. Furthermore, given a topological space $$$(X, \mathcal{T})$$$ and a subset $$$A$$$ of $$$X$$$, we characterize when the subspace topology $$$\mathcal{T}_A$$$ is a maximal (resp., a prime) ideal of the semiring $$$\mathcal{T}$$$. As applications, we provide an algebraic characterization of the one-point compactification of a noncompact, Tychonoff space. Moreover, we describe explicitly the semiring homomorphisms from $$$\mathcal{P}(X)$$$ into $$$\mathcal{P}(Y)$$$ in case $$$X$$$ is a finite set and $$$Y$$$ is an arbitrary nonempty set.
In a preceding paper we introduced a notion of compatibility between a Jacobi structure and a Riemannian structure on a smooth manifold. We proved that in the case of fundamental examples of Jacobi structures : Poisson structures, contact structures and locally conformally symplectic structures, we get respectively Riemann-Poisson structures in the sense of M. Boucetta, (1/2)-Kenmotsu structures and locally conformally Kähler structures. In this paper we are generalizing this work to the framework of Lie algebroids.
Comité de rédaction
Rédacteur en chef
Ali BAKLOUTI
Université de Sfax
Tunisie
ali.baklouti@fss.usf.tn
Editeur honorifique
Khalifa TRIMECHE
Université de Tunis El Manar
Tunisie
khlifa.trimeche@fst.rnu.tn
Rédacteurs en chef adjoint
Abderrazek KAROUI
Université de Carthage
Tunisie
Abderrazek.Karoui@fsb.rnu.tn
Mohamed SIFI
Université de Tunis El Manar
Tunisie
mohamed.sifi@fst.utm.tn
Le comité directeur de APAM annonce avec grand regret le décès de notre collègue Maurice Pouzet, membre du comité de lecture du journal et exprime toutes les condoléances à sa famille et à la communauté mathématique internationale.
Pour contacter les éditeurs : apam@openscience.fr
Merci de mentionner un éditeur dans le formulaire de soumission selon vos thèmes de recherche.