Titre : Compatibility of a Jacobi structure and a Riemannian structure on a Lie algebroid Auteurs : Yacine Aït Amrane , Ahmed Zeglaoui, Revue : Advances in Pure and Applied Mathematics Numéro : Issue 1 (January 2025) Volume : 16 Date : 2025/01/20 DOI : 10.21494/ISTE.OP.2025.1254 ISSN : 1869-6090 Résumé : In a preceding paper we introduced a notion of compatibility between a Jacobi structure and a Riemannian structure on a smooth manifold. We proved that in the case of fundamental examples of Jacobi structures : Poisson structures, contact structures and locally conformally symplectic structures, we get respectively Riemann-Poisson structures in the sense of M. Boucetta, (1/2)-Kenmotsu structures and locally conformally Kähler structures. In this paper we are generalizing this work to the framework of Lie algebroids. Éditeur : ISTE OpenScience