TY - Type of reference TI - Groupe de permutations avec deux orbites à mouvement constant AU - Mehdi Rezaei AU - Mehdi Alaeiyan AB - Let $$$G$$$ be a permutation group on a set $$$\Omega$$$ with no fixed points in $$$\Omega$$$, and let $$$m$$$ be a positive integer. If for each subset $$$\Gamma$$$ of $$$\Omega$$$ the size $$$\Gamma^{g}-\Gamma|$$$ is bounded, for $$$g\in G$$$, the movement of $$$g$$$ is defined as move $$$(g):=\max{|\Gamma^{g}-\Gamma|}$$$ over all subsets $$$\Gamma$$$ of $$$\Omega$$$, and move $$$(G)$$$ is defined as the maximum of move $$$(g)$$$ over all non-identity elements of $$$g\in G$$$. Suppose that $$$G$$$ is not a 2-group. It was shown by Praeger that $$$|\Omega|\leqslant\lceil\frac{2mp}{p-1}\rceil+t-1$$$, where $$$t$$$ is the number of $$$G$$$-orbits on $$$\Omega$$$ and $$$p$$$ is the least odd prime dividing $$$|G|$$$. In this paper, we classify all permutation groups with maximum possible degree $$$|\Omega|=\lceil\frac{2mp}{p-1}\rceil+t-1$$$ for $$$t=2$$$, in which every non-identity element has constant movement $$$m$$$. DO - 10.21494/ISTE.OP.2025.1315 JF - Avancées en Mathématiques Pures et Appliquées KW - Intransitive permutation groups, orbits, bounded movement, constant movement, Intransitive permutation groups, orbits, bounded movement, constant movement., L1 - https://openscience.fr/IMG/pdf/iste_apam25v16n3_2.pdf LA - fr PB - ISTE OpenScience DA - 2025/06/20 SN - 1869-6090 TT - Permutation groups with two orbits having constant movement UR - https://openscience.fr/Groupe-de-permutations-avec-deux-orbites-a-mouvement-constant IS - Numéro 3 (Juin 2025) VL - 16 ER -