TY - Type of reference TI - [Forthcoming] A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials AU - Bakir Farhi AB - This paper presents a new generalization of the Genocchi numbers and the Genocchi theorem. As consequences, we obtain some important families of integer-valued polynomials those are closely related to the Bernoulli polynomials. Denoting by $$${(B_n)}_{n \in \mathbb{N}}$$$ the sequence of the Bernoulli numbers and by $$${(B_n(X))}_{n \in \mathbb{N}}$$$ the sequence of the Bernoulli polynomials, we especially obtain that for any natural number $$$n$$$, the reciprocal polynomial of the polynomial $$$\big(B_n(X) - B_n\big)$$$ is integer-valued. DO - JF - Advances in Pure and Applied Mathematics KW - Genocchi numbers, Bernoulli numbers, Bernoulli polynomials, formal power series, integer-valued polynomials, Genocchi numbers, Bernoulli numbers, Bernoulli polynomials, formal power series, integer-valued polynomials, L1 - LA - en PB - ISTE OpenScience DA - 2022/05/16 SN - 1869-6090 TT - [Forthcoming] Une nouvelle géneralisation des nombres de Genocchi et conséquence sur les polynômes de Bernoulli UR - https://openscience.fr/A-new-generalization-of-the-Genocchi-numbers-and-its-consequence-on-the IS - Forthcoming papers
VL - 13 ER -