@ARTICLE{À venir, TITLE={[FORTHCOMING] Zip-Shift codage des M-TO-1 homéomorphismes locaux}, AUTHOR={Pouya Mehdipour , Sanaz Lamei, }, JOURNAL={Avancées en Mathématiques Pures et Appliquées}, VOLUME={}, NUMBER={Articles à paraître
}, YEAR={2025}, URL={https://openscience.fr/Zip-Shift-codage-des-M-TO-1-homeomorphismes-locaux}, DOI={À venir}, ISSN={1869-6090}, ABSTRACT={We develop topological partitions for m-to-1 local homeomorphisms on compact metric spaces—maps that arise naturally in non-invertible dynamical systems, such as expanding and covering maps. These partitions enable a symbolic representation of the dynamics via the zip shift, an extended bilateral shift in the non-invertible setting. Inspired by Smale’s horseshoe construction, this approach generalizes topological partitions to a broader class of systems and opens new directions for studying their topological and ergodic properties.}}