@ARTICLE{10.21494/ISTE.OP.2025.1254, TITLE={Compatibilité d’une structure de Jacobi et une structure Riemannienne sur une algébroïde de Lie}, AUTHOR={Yacine Aït Amrane , Ahmed Zeglaoui, }, JOURNAL={Avancées en Mathématiques Pures et Appliquées}, VOLUME={16}, NUMBER={Numéro 1 (Janvier 2025)}, YEAR={2025}, URL={https://openscience.fr/Compatibilite-d-une-structure-de-Jacobi-et-une-structure-Riemannienne-sur-une}, DOI={10.21494/ISTE.OP.2025.1254}, ISSN={1869-6090}, ABSTRACT={In a preceding paper we introduced a notion of compatibility between a Jacobi structure and a Riemannian structure on a smooth manifold. We proved that in the case of fundamental examples of Jacobi structures : Poisson structures, contact structures and locally conformally symplectic structures, we get respectively Riemann-Poisson structures in the sense of M. Boucetta, (1/2)-Kenmotsu structures and locally conformally Kähler structures. In this paper we are generalizing this work to the framework of Lie algebroids.}}