@ARTICLE{10.21494/ISTE.OP.2023.1048, TITLE={Diffusion d’énergie pour un INLS de type HARTREE 2D}, AUTHOR={Tarek Saanouni , Radhia Ghanmi, }, JOURNAL={Avancées en Mathématiques Pures et Appliquées}, VOLUME={15}, NUMBER={Numéro 1 (Janvier 2024)}, YEAR={2024}, URL={https://openscience.fr/Diffusion-d-energie-pour-un-INLS-de-type-HARTREE-2D}, DOI={10.21494/ISTE.OP.2023.1048}, ISSN={1869-6090}, ABSTRACT={This paper studies the asymptotic behavior of energy solutions to the focusing non-linear generalized Hartree equation $$$i u_t+\Delta u=-|x|^{-\varrho}|u|^{p-2}(\mathcal J_\alpha *|\cdot|^{-\varrho}|u|^p)u,\quad \varrho>0,\quad p\geq2.$$$ Here, $$$u:=u(t,x)$$$, where the time variable is $$$t \in ℝ$$$ and the space variable is $$$x\inℝ^2$$$. The source term is inhomogeneous because $$$\varrho > 0$$$. The convolution with the Riesz-potential $$$\mathcal J_\alpha:=C_\alpha|\cdot|^{\alpha-2}$$$ for certain $$$0 < \alpha < 2$$$ gives a non-local Hartree type non-linearity. Taking account of the standard scaling invariance, one considers the inter-critical regime $$$1 + \frac{2-2\varrho + \alpha}2 < p < \infty$$$. It is the purpose to prove the scattering under the ground state threshold. This naturally extends the previous work by the first author for space dimensions greater than three (Scattering Theory for a Class of Radial Focusing Inhomogeneous Hartree Equations, Potential Anal. (2021)). The main difference is due to the Sobolev embedding in two space dimensions $$$H^1(ℝ^2)\hookrightarrow L^r(ℝ^2)$$$, for all $$$2 \leq r < \infty$$$. This makes any exponent of the source term be energy subcritical, contrarily to the case of higher dimensions. The decay of the inhomogeneous term $$$|x|^{-\varrho}$$$ is used to avoid any radial assumption. The proof uses the method of Dodson-Murphy based on Tao’s scattering criteria and Morawetz estimates.}}