TY - Type of reference
TI - Les foncteurs de type Gysin-(ℤ/2ℤ)d
AU - Dorra Bourguiba
AU - Said Zarati
AB - Let d ≥ 1 be an integer and Kd be a contravariant functor from the category of subgroups of (ℤ/2ℤ)d to the category of graded and finite 𝔽2-algebras. In this paper, we generalize the conjecture of G. Carlsson [C3], concerning free actions of (ℤ/2ℤ)d on finite CW-complexes, by suggesting, that if Kd is a Gysin-(ℤ/2ℤ)d-functor (that is to say, the functor Kd satisfies some properties, see 2.2), then we have :
$$$\big(C_{d} \big): \; \underset{i \geq 0}{\sum}dim_{\mathbb{F}_{2}} \big(\mathcal{K}_{d}(0)\big)^{i} \geq 2^{d}$$$
We prove this conjecture for 1 ≤ d ≤ 3 and we show that, in certain cases, we get an independent proof of the following
results (for d = 3 see [C4]) :
If the group (ℤ/2ℤ)d, 1 ≤ d ≤ 3, acts freely and cellularly on a finite CW-complex X, then $$${\underset{i \geq 0}{\sum}}dim_{\mathbb{F}_{2}}H^{i}(X;\; \mathbb{F}_{2}) \geq 2^{d}$$$
DO - 10.21494/ISTE.OP.2023.0939
JF - Avancées en Mathématiques Pures et Appliquées
KW - Elementary abelian 2-groups, H∗(ℤ/2ℤ)d-modules, [fr] H∗(ℤ/2ℤ)d− , Free actions of (ℤ/2ℤ)d on finite CW-complexes, Equivariant cohomology, Gysin exact sequence, Elementary abelian 2-groups, H∗(ℤ/2ℤ)d-modules, [en] H∗(ℤ/2ℤ)d− , Free actions of (ℤ/2ℤ)d on finite CW-complexes, Equivariant cohomology, Gysin exact sequence,
L1 - https://openscience.fr/IMG/pdf/iste_apam23v14nspe_4.pdf
LA - fr
PB - ISTE OpenScience
DA - 2023/03/7
SN - 1869-6090
TT - Gysin-(ℤ/2ℤ)d-functors
UR - https://openscience.fr/Les-foncteurs-de-type-Gysin-%E2%84%A4-2%E2%84%A4-d
IS - Numéro 2 (Spécial CSMT 2022)
VL - 14
ER -