TY - Type of reference TI - Bifurcation au-delà des valeurs propres principales pour les problèmes de Neumann avec des poids indéfinis AU - Marta Calanchi AU - Bernhard Ruf AB - This paper is devoted to the study of the effects of indefinite weights on the following nonlinear Neumann problems $$$ {(P^\pm)} \begin{cases} -\Delta u &= \lambda \, a(x) u \pm |u|^{p-1}u\ &\quad \hbox{in } \Omega \subset ℝ^N \\ \frac{\partial u}{\partial \nu} &=\ 0 \ & \hbox{on } \partial \Omega \end{cases}$$$ The function $$$ a = a(x)$$$ is assumed to be continuous and sign-changing. Then the linear part has two sequences of eigenvalues. Our results establish a relation between the position of the parameter $$$\lambda$$$ and the number of nontrivial classical solutions of these problems. The proof combines spectral analysis tools, variational methods and the Clark multiplicity theorem. DO - 10.21494/ISTE.OP.2023.0935 JF - Avancées en Mathématiques Pures et Appliquées KW - eigenvalues, indefinite weight, Neumann problems, bifurcation, eigenvalues, indefinite weight, Neumann problems, bifurcation, L1 - https://openscience.fr/IMG/pdf/iste_apam23v14nspe_2.pdf LA - fr PB - ISTE OpenScience DA - 2023/03/7 SN - 1869-6090 TT - Bifurcation beyond the principal eigenvalues for Neumann problems with indefinite weights UR - https://openscience.fr/Bifurcation-au-dela-des-valeurs-propres-principales-pour-les-problemes-de IS - Numéro 2 (Spécial CSMT 2022) VL - 14 ER -