TY - Type of reference TI - Multiplicative Jordan type higher derivations of unital rings with non trivial idempotents AU - AB Hamid Kawa AU - S N Hasan AU - Bilal Ahmad Wani AB - Suppose R is a non-zero unital associative ring with a nontrivial idempotent "e". In this paper, we prove that under some mild conditions every multiplicative jordan n-higher derivations on R is additive. Moreover, at the end of the paper, we have presented some applications of multiplicative Jordan n-higher derivations on triangular rings, nest algebra, upper triangular block matrix algebra, prime rings, von Neumann algebras. DO - 10.21494/ISTE.OP.2023.0905 JF - Advances in Pure and Applied Mathematics KW - Jordan derivations, derivations, unital rings, matrix algebras, Jordan derivations, derivations, unital rings, matrix algebras, L1 - https://openscience.fr/IMG/pdf/iste_apam23v14n1_3.pdf LA - en PB - ISTE OpenScience DA - 2023/01/13 SN - 1869-6090 TT - Dérivations supérieures multiplicatives de type Jordan des anneaux unitaires avec idempotants non-triviaux UR - https://openscience.fr/Multiplicative-Jordan-type-higher-derivations-of-unital-rings-with-non-trivial IS - Issue 1 (January 2023) VL - 14 ER -