TY - Type of reference TI - Latent variable estimation by generalized Kalman recursions AU - Sadeq A.Kadhim AU - Joseph Ngatchou-Wandji AB - This paper discusses state-space models with multi-categorical longitudinal observations and states characterized by the so-called Conditional Heteroskedastic AutoRegressive Nonlinear (CHARN) models. The latter are estimated via generalized Kalman recursions based on particle filters and EM algorithm. Our findings generalize the literature. They are illustrated by numerical simulations and applied to data from patients surged for breast cancer. DO - 10.21494/ISTE.OP.2022.0864 JF - Biostatistics and Health Sciences KW - Generalized Kalman recursions, Generalized state space models, Multicategorical longitudinal data, Latent variables, Particle filters, EM algorthim, Récursivités de Kalman généralisées, Modèles à espace d’état non-linéaires, Données multicatégorielles longitudinales, Variables latentes, Filtre particulaires, Algorithme EM, L1 - https://openscience.fr/IMG/pdf/iste_biostat22v3n1_1.pdf LA - en PB - ISTE OpenScience DA - 2022/09/5 SN - 2632-8291 TT - Estimation des variables latentes par des récursivités de Kalman généralisées UR - https://openscience.fr/Latent-variable-estimation-by-generalized-Kalman-recursions IS - Issue 1 VL - 3 ER -