TY - Type of reference TI - Une nouvelle géneralisation des nombres de Genocchi et conséquence sur les polynômes de Bernoulli AU - Bakir Farhi AB - This paper presents a new generalization of the Genocchi numbers and the Genocchi theorem. As consequences, we obtain some important families of integer-valued polynomials those are closely related to the Bernoulli polynomials. Denoting by $$${(B_n)}_{n \in \mathbb{N}}$$$ the sequence of the Bernoulli numbers and by $$${(B_n(X))}_{n \in \mathbb{N}}$$$ the sequence of the Bernoulli polynomials, we especially obtain that for any natural number $$$n$$$, the reciprocal polynomial of the polynomial $$$\big(B_n(X) - B_n\big)$$$ is integer-valued. DO - 10.21494/ISTE.OP.2022.0886 JF - Avancées en Mathématiques Pures et Appliquées KW - Genocchi numbers, Bernoulli numbers, Bernoulli polynomials, formal power series, integer-valued polynomials, Genocchi numbers, Bernoulli numbers, Bernoulli polynomials, formal power series, integer-valued polynomials, L1 - https://openscience.fr/IMG/pdf/iste_apam22v13n4_2.pdf LA - fr PB - ISTE OpenScience DA - 2022/10/21 SN - 1869-6090 TT - A new generalization of the Genocchi numbers and its consequence on the Bernoulli polynomials UR - https://openscience.fr/Une-nouvelle-generalisation-des-nombres-de-Genocchi-et-consequence-sur-les IS - Numéro 4 (Septembre 2022) VL - 13 ER -