Titre : Existence Results for Singular p(x)-Laplacian Equation Auteurs : R. Alsaedi, K. Ben Ali, A. Ghanmi, Revue : Advances in Pure and Applied Mathematics Numéro : Issue 3 (June 2022) Volume : 13 Date : 2022/06/1 DOI : 10.21494/ISTE.OP.2022.0840 ISSN : 1869-6090 Résumé : This paper is concerned with the existence of solutions for the following class of singular fourth order elliptic equations $$$ \left\{ \begin{array}{ll} \Delta\Big(|x|^{p(x)}|\Delta u|^{p(x)-2}\Delta u\Big)=a(x)u^{-\gamma (x)}+\lambda f(x,u),\quad \mbox{in }\Omega, \\ u=\Delta u=0, \quad \mbox{on }\partial\Omega. \end{array} \right.$$$ where $$$\Omega$$$ is a smooth bounded domain in $$$\mathbb{R}^N, \gamma :\overline{\Omega}\rightarrow (0,1)$$$ be a continuous function, $$$f\in C^{1}( \overline{\Omega}\times \mathbb{R}), p:\; \overline{\Omega}\longrightarrow \;(1,\infty)$$$ and $$$a$$$ is a function that is almost everywhere positive in $$$\Omega$$$. Using variational techniques combined with the theory of the generalized Lebesgue-Sobolev spaces, we prove the existence at least one nontrivial weak solution. Éditeur : ISTE OpenScience