@ARTICLE{10.21494/ISTE.OP.2022.0840,
TITLE={Existence Results for Singular p(x)-Laplacian Equation},
AUTHOR={R. Alsaedi, K. Ben Ali, A. Ghanmi, },
JOURNAL={Advances in Pure and Applied Mathematics},
VOLUME={13},
NUMBER={Issue 3 (June 2022)},
YEAR={2022},
URL={https://openscience.fr/Existence-Results-for-Singular-p-x-Laplacian-Equation},
DOI={10.21494/ISTE.OP.2022.0840},
ISSN={1869-6090},
ABSTRACT={This paper is concerned with the existence of solutions for the following class of singular fourth order elliptic equations
$$$
\left\{
\begin{array}{ll}
\Delta\Big(|x|^{p(x)}|\Delta u|^{p(x)-2}\Delta u\Big)=a(x)u^{-\gamma (x)}+\lambda f(x,u),\quad \mbox{in }\Omega, \\
u=\Delta u=0, \quad \mbox{on }\partial\Omega.
\end{array}
\right.$$$
where $$$\Omega$$$ is a smooth bounded domain in $$$\mathbb{R}^N, \gamma :\overline{\Omega}\rightarrow (0,1)$$$ be a continuous function, $$$f\in C^{1}( \overline{\Omega}\times \mathbb{R}), p:\; \overline{\Omega}\longrightarrow \;(1,\infty)$$$ and $$$a$$$ is a function that is almost everywhere positive in $$$\Omega$$$. Using variational techniques combined with the theory of the generalized Lebesgue-Sobolev spaces, we prove the existence at least one nontrivial weak solution.}}