TY - Type of reference TI - Sharp bounds for Steklov eigenvalues on star-shaped domains AU - Sheela Verma AU - G. Santhanam AB - In this article, we consider Steklov eigenvalue problem on star-shaped bounded domain Ω in hypersurface of revolution and paraboloid, P = {(x, y, z) ∈ ℝ3 : z = x2 + y2}. A sharp lower bound is derived for all Steklov eigenvalues of Ω in terms of the Steklov eigenvalues of the largest geodesic ball contained in Ω with the same center as Ω. This work is a generalization of a result given by Kuttler and Sigillito (SIAM Rev 10:368 − 370, 1968) on a star-shaped bounded domain in ℝ2. DO - 10.21494/ISTE.OP.2020.0544 JF - Advances in Pure and Applied Mathematics KW - Laplacian, Steklov eigenvalue problem, Star-shaped domain, Rayleigh quotient, Laplacian, Steklov eigenvalue problem, Star-shaped domain, Rayleigh quotient, L1 - https://openscience.fr/IMG/pdf/iste_apam20v11n2_3.pdf LA - en PB - ISTE OpenScience DA - 2020/09/3 SN - 1869-6090 TT - Sur les valeurs propres de Sketlov pour certains *-forme domaines UR - https://openscience.fr/Sharp-bounds-for-Steklov-eigenvalues-on-star-shaped-domains IS - Issue 2 (September 2020) VL - 11 ER -