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ABSTRACT. In Part II of the overview of structural reliability analysis methods, the category of sampling methods is reviewed. 

The basic Monte Carlo simulation is the foundation for sampling methods of reliability analysis. Sampling methods can evaluate 

the failure probability defined by both explicit and implicit performance function. With sufficient number of samples, simulation 

methods can give accurate results. However, for complex problem the computational cost is expensive. Thus, based on 

variance reduction techniques, some variants of basic Monte Carlo simulation method are proposed to reduce the com-

putational cost. Monte Carlo simulation and its variants, including importance sampling, adaptive sampling, Latin hypercube 

sampling, directional simulation, and subset simulation, are presented and summarized in this paper. 
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1. Introduction 

Reliability analysis, which offers the theoretical framework for considering uncertainties in engineering 

decision scheme [1], plays important roles in modern design. Our work devotes to provide a comprehensive 

overview and some valuable remarks on reliability analysis methods for researchers and engineers. In 

Part I of the overview, the local reliability methods are reviewed completely.  

In this paper, the Part II of the overview, we focus on sampling methods for calculating the probability 

of failure in reliability problems. In Section 2, the basic Monte Carlo simulation (MCS) methods and 

several popular invariants of MCS are detailed. Subsequently, a typical example is presented in Section 3 

to illustrate some sampling methods and local reliability methods. In the end, a brief summary is given 

in Section 4. 

2. Sampling Methods 

Sampling methods (or simulation method) have a long history in probabilistic analysis. The primary 

goal of reliability analysis is to calculate the failure probability defined by  
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where ( )P ⋅
 
is the probability operator, X is a random vector that represents the design variables, ( )G X

 
is 

the performance function defined in X-space, ( )X
f x  is the joint probability density function (PDF) of 

random vector X , ( )H U
 
is the performance function in U-space, and ( )U

φ u
 
is the standard multidimensional 

Gaussian density function. More details about this can be found in Part I of our work. 

By using sampling methods, the failure probability defined by Equation (1) in for both explicit and 

implicit performance function can be evaluated. The crude (or basic) Monte Carlo simulation (MCS) is 

the foundation for this kind of reliability methods. Other variants, which introduced variance reduction 

techniques, are proposed in order to reduce the computational cost of crude MCS.  
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2.1. Monte Carlo Simulation (MCS) Method 

Monte Carlo Simulation (MCS) is a widely used method for numerically computing integrals and 

expected values. It is therefore adopted in reliability problems for estimating the failure probability. The 

basis for simulation techniques is well illustrated by rewriting the failure probability integral in Equation 

(1) by changing the domain of integration to the entire space using an indicator function. The rewritten 

integral equation is  
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where ( )G  xI is an indicator function of the performance function, which is defined as 
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By using the above defined indicator function, the integration domain is changed from the failure 

domain ( ) 0G ≤x to the entire sample space. From Equation (2), we can see that the failure probability is 

the expected value of ( )G  xI , i.e., we can have 
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where ( )⋅E denotes the expected value. Therefore, we can estimate the failure probability by the following 

procedure. First, N  realizations of the random variables ( )
, 1, ,

i
i N=x ⋯  are sampled according to the proba-

bility distribution of .X Then the performance functions are evaluated at these input values. Finally,  

the number of the points in failure domain among these N  samples are countered in 
f
.N Consequently, 

we have 
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is an unbiased estimator of the failure probability 
f

p , i.e., [ ]f f
ˆ .p p=E The coefficient of variation of the 

estimator
f

p̂ is 
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where [ ] ( )f f f
ˆVar 1p p p N= − is the variance of 

f
ˆ .p The coefficient of variation [ ]f

ˆCov p measures the conver-

gence rate of the Monte Carlo simulation results.  According to Equation (6), for an objective [ ]f
ˆCov 0.1p =

and a probability f 10 ,
m

p
−=  approximately 210mN +=  samples are needed. 

The MCS is a simple sampling (simulation) method is simple to implement and can be applied to 

almost all reliability problems, at any desired accuracy [2]. However, the performance function needs 

to be evaluated a large number of times with randomly sampled input values of the basic variables, 

which can be time consuming and expensive for problems with implicit performance functions or (and) 

high reliability (i.e. low failure probability).  

In order to enhance the efficiency of MCS, several more-efficient sampling methods, such as Importance 

Sampling, Directional Simulation, and Subset Sampling, have been developed [3]. They form the kernel 

of advanced sampling methods for structural reliability. 

2.2. Importance Sampling 

The basic idea of importance sampling (IS) is to focus on the region(s) of “importance” so as to save 

computational resources [4]. The importance region(s) in reliability problem can be seen as the failure 
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region. The concept underlying the importance sampling (IS) method is to replace the original PDF

( )X
f x with an IS distribution ( )V

h x  such that a large number of samples lies in the “important region” of 

the sample space, i.e., the failure region in reliability problem [5]0. Accordingly, the failure probability 

of Equation (2) can be rewritten as 
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where ( )V
h v  is called the importance sampling probability density function (PDF) or instrumental 

probability density function and ( )d =1
V

h
∞

−∞∫ v v . This transformation implies that the estimator of the failure 

probability in Equation (5) becomes 
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where ( )
, 1, 2, ,

i
i N=v ⋯  are the samples generated from ( )V

h ⋅  instead of ( )⋅X
f  as before. The variance of the 

estimate of importance sampling 
f

p̂  is given by: 
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It can be seen that a good choice for ( )V
h v  can produce smaller variance of fp̂  than that from crude 

Monte Carlo simulation method. Conversely, the variance can actually be increased when a very poor 

choice of ( )V
h v  is used. By minimizing the above variance, the optimal importance sampling PDF can 

be given as [6]: 
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However, this optimal importance sampling PDF is ineffective in practice, because it requires 

knowledge of 
f

p priori. Therefore, in practical applications of IS, the optimal importance sampling PDF 

is approximately obtained and used. In this point, the importance sampling methods in reliability analysis 

that have been proposed and widely used in the literatures can be grouped into: importance sampling  

at the design point and adaptive importance sampling.  

2.2.1. Importance Sampling (IS) at the Design Point 

For reliability problems, the region(s) of “importance” is the failure domain, more particularly, the 

region of greatest probability density within the failure domain. The design point ∗u , which locates on 

the limit state and has the minimal distance from the origin in the standard normal space, is considered 

to be the point with the highest probability density among all realizations in the failure domain ( ) 0.H ≤u

Accordingly, in early applications of the importance sampling concept in structural reliability, the density

( )V
h v  was posed over the design point and ( )V

h v was simply taken as a multi-dimensional Gaussian 

distribution. This approach is known as the importance sampling at the design point, which is illustrated 

in Figure 1.  

The search of the design point, apparently, is the basis for this approach. The algorithm of finding 

the design point ∗u  is detailed in design point-based methods in Section 3.2 in Part I of this overview. 

Once the design point ∗u , whose  corresponding point in X-space is denoted by ,
∗

x is identified, the 



 

© 2016 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                    Page | 4 

importance sampling density function ( )V
h v is chosen as a multivariate Gaussian distribution with the 

statistical moments ( ) ∗=V xE and 
VV XX

=Σ Σ  (
VV

Σ is the covariance matrix for importance sampling density 

and 
XX

Σ  is the covariance matrix of basic random vector X ): 
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Then samples generated according to this density function ( )V
h v are used to estimate the probability 

of failure.  

The importance sampling at the design point is simple to implement and usually works efficiently. 

However, since this approach depends on the design point, it may fail when the limit state function is 

highly nonlinear or give inaccurate results. Moreover, if there are multiple local minima in the search 

of the design point, this approach may not work well.  

 

Figure 1. Importance Sampling at the Design Point 

2.2.2. Adaptive Sampling (AS) 

Based on the idea that the efficiency of simulation methods can be increased by maximizing the 

number of the samples in failure domain, it would be efficient to choose the importance sampling 

density as the origin density conditional on the failure domain [7], i.e., 

( ) ( )= ∈F
V X

h fv v v  (12) 

However, this function is not known in advance. In adaptive sampling method, the desired conditional 

distribution is estimated by statistics of the points in the failure domain from previous simulations [8]. 

The new distribution is then used to carry out the subsequent sampling. The ideal conditional density 

cannot be met strictly. It is possible that Equation (12) can be satisfied at least in terms of the first and 

second moments. In other words, the mean and standard deviation (or covariance) of the conditional 

density function are calculated from the sampling points in the failure domain, i.e., 
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The indices h and f  refer to the respective joint densities ( )V
h v and ( )X

f v . The first set of samples is 

performed using the importance sampling at the design point. Then the right-hand sides of the Equation 

(13) can be estimated. These two values are used to adapt ( )V
h v for the next run. In terms of these two 

statistical moments (mean and covariance), a joint Gaussian distribution is uniquely determined and 

this distribution is chosen for ( )V
h v in subsequent sampling. Through the iterative adaptive algorithm, 

Equation (12) can be satisfied in terms of first and second moments. 
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Figure 2. Iterations of Adaptive Sampling 

2.3. Latin Hypercube Sampling (LHS) 

Generally, in simulation methods, the random sampling method is adopted to generate samples. In order 

to improve the efficiency of basic MCS, another sampling method called Latin Hypercube Sampling 

(LHS) was developed [9]. Latin hypercube sampling is a widely-used method to generate controlled 

random samples and its basic idea is to make sampling point distribution close to the probability density 

function (PDF).  

LHS uses a stratified sampling scheme to improve the coverage of the input space. The stratification 

is implemented by dividing the vertical axis on the graph of the cumulative distribution function (CDF)

( )
jXF ⋅  of a random variable jX into N  non-overlapping intervals of equal length, where N is the number 

of samples. Through the inverse of CDF ( )1

jXF − ⋅ , these N intervals divide the horizontal axis into N

equiprobable, but not necessarily equal-length, intervals. Thus, the axis of jX  (horizontal axis) has been 

stratified into N  equiprobable and non-overlapping intervals. That is to say the range of random variable 

jX  is divided into N equally probable intervals.  

 

Figure 3. Evenly partition CDF and Equiprobable Intervals of Random Variable 

Then, randomly pick up one value within each of the N intervals on the vertical axis defined before. 

With ( )1

jXF − ⋅ , these selected values are mapped on horizontal axis such that exactly one value in each 

equally probable intervals of jX . In this way, N  samples of one-dimensional random variable jX  are 

generated by LHS (seen in Figure 3). In order to generate N samples of a k -dimensional random vector 

[ ]T

1
= , ,

k
X XX ⋯ , N  samples of each component of X is firstly generated by LHS as previously described, 

then the N  values of 1X are paired in a random manner with values of 2X , sequentially, these pairs are 

then paired similarly with values of 3X  and so on, until N  values of k components of X  are formed. 

The N samples of random vector X  form an k N× matrix whose j-th row contains the LHS for the 
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component jX . A random process is used to ensure the random ordering (pairing) of the values within 

each row of this matrix. This mixing process serves to emulate the paring of observations in a simple 

Monte Carlo process.  

LHS ensures that the entire range of each input variable is completely covered. It has been shown 

that LHS is more efficient than simple random sampling in a large range of conditions [10]. LHS has 

been widely used in design of experiments and sampling methods for reliability problems owing to its 

efficiency. 

2.4. Directional Simulation 

Directional Simulation (DS) reduces the dimension of probability integral by identifying a set of 

directions for integration and estimating the probability as a weight average of the directional integrals 

[11]. It is based on the concept of conditional probability and it also exploits the symmetry of the 

standard normal space U [12]. The key idea of directional simulation is firstly seeking a set of directions 

in U-space and then perform the reliability analysis as a sequence of one-dimensional integrations in 

each direction.  

The n-dimensional normal vector U  can be expressed as R=U A , 0R ≥ , where A  is a random unit 

vector distributed on the n-dimensional unit sphere nΩ , and 2R  ( R = U ) is a chi-square ( 2χ ) distributed 

random variable with n  degrees of freedom and independent of .A The failure probability fp  can be 

expressed as 

( ) ( )f 0 d
∈Ω

=  ≤ =  ∫ n
p P H R fA A a a a

A
a

  (14) 

where ( )f
A

a  is the uniform probability density function of A on the unit sphere nΩ .  

Practically, a sequence of N  random direction vectors ( ) ( ) ( )i i i=a u u , 1, ,i N= ⋯  , is generated fist, then ir  

which are the solution of ( )( ) 0
i

G r =a  are found iteratively, the failure probability is estimated as 

( )( ) ( )2

f

1 1

1 1
ˆ 0 1

= =

   = ≤ = −  ∑ ∑
N N

i

n i

i i

p P H r r
N N
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where [ ]2

n
χ ⋅  is the chi-square CDF with n  degrees of freedom. 

Directional simulation eliminates the limitations in situations of nonlinearity of the limit state function 

or multiple design points. Furthermore, importance directional simulation [13][14], which uses the 

importance sampling technique to concentrate the direction vectors in the regions of interest, has also 

proposed for reliability analysis. 

 

Figure 4. Directional Simulation 
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2.5. Subset Simulation 

Subset Simulation (SS) is a new simulation approach to efficiently deal with small failure probabilities 

encountered in reliability analysis problems. The underlying idea of subset simulation is to express the 

(small) failure probability as a product of (larger) probabilities conditional on some intermediate events 

[15]. This converts the simulation of a rare event into a sequence simulation of more frequent events.  

For the target failure event F in reliability problem, let 1 2 mF F F F⊃ ⊃ ⊃ =⋯  be a decreasing sequence 

of intermediate events, so that 1

k

k i iF F== ∩ , 1,2, ,k m= ⋯ . For example, a general failure event F  in structural 

reliability is defined as ( ){ }0F g= ≤x x , accordingly, a sequence of intermediate events can simply be 

defined as ( ){ },i iF g C= ≤x x where 1 2 0.mC C C> > > =⋯ By sequentially conditioning on the event iF , the target 

failure probability fp  can be expressed as 

( ) ( ) ( )
1

f 1 1

1

−

+
=

= = ∏
m

m i i

i

p p F p F p F F  (16) 

We can see that even if fp is small, the conditional probabilities ( ){ }1
, 1, 2, , 1

i i
p F F i m+ = −⋯ and ( )1

p F in 

Equation (16) can be made sufficiently large by appropriately choosing mand the intermediate events

{ }, 1, 2, , 1
i

F i m= −⋯ . This overcomes the difficulty of crude Monte Carlo simulation in small failure prob-

ability situations and makes subset simulation an efficient simulation method, especially for condition 

with small failure probability. For example, considering 5

f 10p
−≈  and choosing 4m =  intermediate events 

such that ( )1
p F  and ( )1

0.1, 1, 2,3
i i

p F F i+ ≈ = , the conditional probabilities can be efficiently evaluated by 

simulation of the relatively frequent intermediate events, even though the directly simulation of fp  is 

very computationally expensive [16].  

The original idea of subset simulation is to estimate the failure probability fp by estimating ( )1
p F and

( )1
, 1, 2, , 1.

i i
p F F i m+ = −⋯ In simulation, standard MCS can be used to estimate ( )1

,p F while the conditional 

probabilities ( ){ }1 , 1,2, , 1i ip F F i m+ = −⋯  are estimated by Markov Chain Monte Carlo (MCMC) simulation 

method [17].  

3 Illustrative Example 

The example in this subsection is used to illustrate some sampling methods, including MCS, IS and 

LHS. Additionally, this example is also solved by FORM and SORM. Suppose that the performance 

function of a structure is defined by 

( )
2 2

3 4 5

2 3 4 1

6 7

= − −
X X X

G X X X X
X X

X  

where [ ]T

1 7
, ,= X XX ⋯ are the basic random variables which are independently normal distributed with 

mean value vector 

T
40.01, 0.3, 360, 2.26 10 , 0.5, 0.12, 40− = × Xµ  

and coefficient of variation vector 

[ ]T
0.30, 0.05, 0.10, 0.05, 0.10, 0.05, 0.15=

X
cov . 

FORM and SORM Solutions 

Firstly, the FORM is performed to solve this problem. The results of FORM are the basis for using 

SORM and IS based on design point. The reliability index and failure probability of FORM are 

( ) 4

f 1
3.4131, 3.2113 10pβ β −= = Φ − = ×
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The design point in X-space is  

[ ]T
0.0178,0.2875,292.7685,0.0002,0.5019,0.1199,39.6627∗ =x

 

The failure probability calculated by SORM, based on FORM results, is 4

f 2 3.38 169 0p
−= ×   

Monte Carlo Simulation (MCS) 

In order to illustrate the convergence of Monte Carlo simulation (MCS), different number of samples 

are used in basic MCS. In order to obtain the coefficient of variation defined in Equation (6), which is 

usually used to measure the convergence rate of MCS, the exact probability of failure fp is necessary. 

Here, the result of a MCS with 810  samples is taken as the exact (or true) value of failure probability, 

that is 4

f 3.38 17 0p
−= × . The coefficient of variation ( [ ]f

ˆCov p ) computed by Equation (6) and 

corresponding sample size ( MCSN ) are listed in Table 1. 

The MCS solutions ( fp̂ ) by the use of different number of samples ( MCSN ) are reported in Table 2. It 

is necessary to note that the solution of each certain number of samples is the average probability of 50 

independent simulations with the same sampling number. The coefficient of variation [ ]f
ˆVar p , estimated 

failure probability fp̂  and the failure probability with 2± standard deviations ( [ ]f f
ˆ ˆ2 Varp p± ) with 

respect to the number of samples are plotted in Figure 5.  

 

Figure 5. Convergence of Monte Carlo simulations 

In Figure 5, it can be seen that the coefficient of variation decreases as the sample size increases. In 

other words, the solution of MCS converges as the increase of sample size. Therefore, accurate solution 

can be obtained by using sufficient large sample size. However, the computational cost increase with 

the augment in sample size. The drawback in MCS can be seen from this.  

Latin Hypercube Sampling (LHS) 

Latin Hypercube Sampling (LHS) is also performed to solve this example. The same as MCS, LHS 

perform with different sample size, from 61 10×  to 71 10× , and 50 independent simulations are carried out 

for each sample size. The average probability from 50 simulations at each sample size are reported in 

Table 3. 

Importance Sampling (IS) at the Design Point 

The importance sampling (IS) using a multivariate Gaussian distribution posed over the design point 

is applied for this problem. The probability of failure estimated by IS with different sample size are 

given in Table 4.  
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It is obvious that IS can give accurate solution with small sample size than MCS and LHS. The 

fluctuation of the probability estimated by IS is very small. This is owing to the variance reduction 

technique in IS. Thus, the use of IS can reduce the computational burden of MCS. 

Comparison 

The results from FORM, SORM and above three sampling methods with sample size of 71 10× are 

presented in Table 5. 

For this nonlinear problem, the FORM is no capable to give accurate solution due to its first-order 

approximation of the limit state. While, the SORM improves the FORM and gives sufficient accurate 

results. Three sampling methods, MCS, LHS and IS, provide accurate estimate of the failure probability. 

Sampling methods are not restricted by the shape of the limit state and thus can be used for linear or 

nonlinear problems. 

MCS
N  1.E+06 2.E+06 3.E+06 4.E+06 5.E+06 

[ ]ˆ
f

Cov p  5.43E-02 3.84E-02 3.14E-02 2.72E-02 2.43E-02 

MCS
N  6.E+06 7.E+06 8.E+06 9.E+06 1.E+07 

[ ]ˆ
f

Cov p  2.22E-02 2.05E-02 1.92E-02 1.81E-02 1.72E-02 

Table 1. Coefficient of variance with respect to sample size in MCS 

MCSN  1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 

fp̂  3.3618E-04 3.3828E-04 3.3603E-04 3.3912E-04 3.3846E-04 

fˆf
ˆ 2− pp σ  2.9938E-04 3.1226E-04 3.1478E-04 3.2072E-04 3.2200E-04 

fˆf
ˆ 2+ pp σ  3.7298E-04 3.6430E-04 3.5728E-04 3.5752E-04 3.5492E-04 

MCSN  6.0E+06 7.0E+06 8.0E+06 9.0E+06 1.0E+07 

fp̂  3.3936E-04 3.3983E-04 3.3977E-04 3.3784E-04 3.3875E-04 

fˆf
ˆ 2− pp σ  3.2434E-04 3.2592E-04 3.2676E-04 3.2557E-04 3.2711E-04 

fˆf
ˆ 2+ pp σ  3.5438E-04 3.5374E-04 3.5278E-04 3.5011E-04 3.5039E-04 

Table 2. Probability of failure estimated by MCS with different sample size 

N  1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 

fp̂  (LHS) 3.3034E-04 3.3924E-04 3.3738E-04 3.3891E-04 3.3944E-04 

N  6.0E+06 7.0E+06 8.0E+06 9.0E+06 1.0E+07 

fp̂  (LHS) 3.4013E-04 3.3893E-04 3.4024E-04 3.3812E-04 3.3871E-04 

Table 3. Probability of failure estimated by LHS with different sample size 

N  1.0E+06 2.0E+06 3.0E+06 4.0E+06 5.0E+06 

fp̂  (IS) 3.3880E-04 3.3881E-04 3.3871E-04 3.3874E-04 3.3885E-04 

N  6.0E+06 7.0E+06 8.0E+06 9.0E+06 1.0E+07 

fp̂  (IS) 3.3884E-04 3.3880E-04 3.3884E-04 3.3882E-04 3.3878E-04 

Table 4. Probability of failure estimated by IS with different sample size 
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Reliability 

Method 

Local Reliability Methods Sampling Methods 

FORM SORM MCS LHS IS 

Failure 

Probability 
3.2113E-04 3.3869E-04 3.3875E-04 3.3871E-04 3.3878E-04 

Table 5. Results from different reliability methods 

4. Summary 

Sampling methods do not rely on the convergence of design point search or approximations of the 

true limit state. They are generally more accurate than these local reliability methods and independent 

with results obtained by FORM or SORM reliability analysis. However, sampling methods typically 

require a large number of performance function evaluations, which makes them impractical if the per-

formance function is expensive to evaluate. With the variance reduction techniques, such as importance 

sampling, directional simulation and subset simulation described in this section, the number of sampling 

could be cut down in some degree. Even with the help of variance reduction techniques, if the performance 

function evaluations are performed through complex calculations, such as finite element simulations, which 

are computationally cost, sampling methods would be infeasible for computation burden problems.  
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