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ABSTRACT. An analysis of topology optimization employing deep learning, namely Generative Adversarial Networks 

(GANs), and topology optimization utilizing the Solid Isotropic Material with Penalization (SIMP) method is presented in this 

research. We describe the theoretical foundations of GANs and the SIMP technique. A cantilever beam with predetermined 

boundary conditions was the topic of a static study to show the practical efficacy of these methods. The structural 

performance parameters, such as maximal directional displacement, maximal Von Mises stress, and deformation energy. 

The findings show that deep learning-based topology optimization, as demonstrated by TopologyGAN, provides 

considerable benefits in terms of improved design correctness and computing performance. 

RÉSUMÉ. Cet article présente une analyse de l'optimisation topologique utilisant l'apprentissage profond, à savoir les 

réseaux adversariaux génératifs (GAN), et l'optimisation topologique utilisant la méthode SIMP (Solid Isotropic Material 

with Penalization). Nous décrivons les fondements théoriques des GAN et de la technique SIMP. Une poutre en porte-à-

faux avec des conditions limites prédéterminées a fait l'objet d'une étude statique pour montrer l'efficacité pratique de ces 

méthodes. Les paramètres de performance structurelle, tels que le déplacement directionnel maximal, la contrainte 

maximale de Von Mises et l'énergie de déformation. Les résultats montrent que l'optimisation topologique basée sur 

l'apprentissage profond, telle que démontrée par TopologyGAN, offre des avantages considérables en termes 

d'amélioration de l'exactitude de la conception et de la performance informatique. 
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1. Introduction 

Topology Optimization (TO) is a crucial methodology in structural design, encompassing two main 

categories: size optimization and shape optimization. Its primary goal is to optimize the spatial 

distribution of materials, significantly enhancing design flexibility and providing a systematic 

framework for achieving high-performance and innovative structures [ZHA 94]. Topology optimization 

is used in a wide range of applications, including automotive, aerospace, and biomedical fields. Among 

the case studies of topology optimization, notable examples include the works of [ELJ 23], [ANT 22] 

and [LKA 24]. 

Bendsoe and Kikuchi  [BEN 88]  presented the homogenization approach in 1988, the first topology 

optimization technique. This technique has undergone development and exploration in several ways. In 

the study by  [OUC 23], the effect of topology optimization (TO) parameters on the strength of the 

optimized structure was compared using four different topology optimization methods. Another study 

by  [ANT 23]  discussed the bending behavior of topologically optimized ABS mesostructures that were 

3D printed using the FDM process. This research provides valuable insights into the mechanical 

properties of optimized structures produced through additive manufacturing.  

Some of the derived approaches are Density-based techniques like the Level Set Method (LSM), the 

Rational Approximation of Material Properties (RAMP), and the Solid Isotropic Material with 

Penalization (SIMP). Additionally, evolutionary techniques have shown to be successful strategies for 

topology optimization. These include Evolutionary Structural Optimization (ESO), Bidirectional 

Evolutionary Structural Optimization (BESO). Feature-Driven Optimization (FDO), Morphable Mobile 

Voids (MMV) and Morphable Mobile Components (MMC)  [OUC 22].  
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The complex structures obtained through topology optimization are manufactured using additive 

manufacturing (AM). AM, sometimes referred to as 3D printing (3DP), is the process of creating parts 

layer by layer employing a variety of methods, including deposition, melting, and adhesion of various 

material states, such as powder, liquid, or filamentc  [STA 12]. The detailed exploration of additive 

manufacturing technologies and their benefits is thoroughly addressed in the works of   [LKA 22] and  

[ELJ 23]. These papers provide comprehensive insights into the various techniques employed in additive 

manufacturing, as well as the numerous advantages these technologies offer. Several papers published 

in recent years have emphasized the advantages of artificial intelligence (AI) in additive manufacturing. 

AI is utilized to improve the overall effectiveness and caliber of the AM process by optimizing process 

parameters, designing supports, and dealing with manufacturing constraints  [LAD 21] .  

Artificial intelligence (AI) is the study and development of tools that enable machines to sense their 

environment and use intelligence and learning to make decisions and achieve goals  [JIN 20]. AI is a 

broad field that includes machine learning (ML), deep learning (DL), reinforcement learning (RL), 

generative models (GM), and data processing methods.  

A new trend is the merging of AI and topology optimization especially DL based on deep neural 

network (DNN). Three views can be used to generalize DNN-based approaches to TO: regression model-

based and generative model-based approaches for learning data; direct design, sub-procedure 

substitution, post-processing, and reparameterization for DNN in TO; and the properties of the solved 

TO problem (stiffness problem, stress constraint problem, and nonlinear problem)   [RUS 16]. Research 

on improving current topology optimization  methods with machine learning and deep learning  primarily 

aims at seven major goals: reducing the dimensionality of the design space, improving optimizers, 

facilitating generative design (design exploration), accelerating iterations, enabling non-iterative 

optimization, developing meta-models, and improving post-processing  [SOS 19]. The numerous 

applications of ML approaches for improving TO can be categorized from several angles, including the 

form of input data, the ML loss function, the incorporation of physical information, and the various uses 

of learning algorithms  [SHI 23]. 

In this paper, we present the formulation of the SIMP method and generative adversarial networks in 

Section 2. Additionally, we conduct a static analysis in section 3 to compare topology optimization using 

the SIMP method with that using deep learning. Finally, we discuss the static analysis results. 

2. Material and methods 

One of the most powerful algorithms in deep learning-based topology optimization is TopologyGAN, 

which is founded on conditional generative adversarial networks (cGANs). Instead of directly mapping 

boundary conditions to the resulting optimal forms, this algorithm utilizes information obtained from 

various physical fields computed on the original domain with the prescribed boundary conditions. This 

approach enables the network to learn more precise mappings  [NIE 21].  

Finite element analysis and the SIMP approach are integrated into the TopologyGAN network design, 

which is shown in Figure 1. The generator uses the ground truth (GT) output produced by the SIMP 

method to translate the initial physical fields f to the estimated optimum topology and volume fraction. 

The generator uses U-SE-ResNet, a downsampling–upsampling structure that combines a U-Net with 

the SE-ResNet module. PatchGAN is used by the discriminator, which is conditioned on more data. It 

picks up the ability to tell authentic structures from fakes. 
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Figure 2. Network Architecture of TopologyGAN 

The formulation of the SIMP method to optimize compliance is presented in Equation 1. Where 𝐶𝑦 

is the compliance, 𝑁 is the total number of elements, 𝐾 is the stiffness matrix, ue is the elemental 

displacement vector, 𝑘𝑒 is the elemental stiffness matrix, and 𝑦 is the domain design. 𝑈 and 𝐹 are the 

displacement and force vectors.  

min
𝑦

𝐶𝑦 = 𝑈𝑇𝐾𝑈 = ∑ 𝑦𝑒
𝑝𝑢𝑒

𝑇𝑘𝑒𝑢𝑒

𝑁

𝑒=1
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𝑉𝑦

𝑉0
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: 0 ≤ 𝑦𝑒 ≤ 1             

          [1] 

The GAN  formulation  [GOO 14] is used to calculate the loss functions of discriminator and the 

generator 𝐿𝐷
𝐺𝐴𝑁  and 𝐿𝐺

𝐺𝐴𝑁. This formulation is described in equation 2. 

ℒ𝐺,𝐷
𝑐𝐺𝐴𝑁 = Ε(𝑥,𝑦)∽𝑝𝑑𝑎𝑡𝑎(𝑥,𝑦) [log 𝐷(𝑥, 𝑦)] + Ε𝑥∽𝑝𝑑𝑎𝑡𝑎(𝑥),𝑧∽𝑝𝑧(𝑧) [log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]   

ℒ𝐺,𝐷
𝑐𝐺𝐴𝑁 = Ε𝑥,𝑦,𝑧[‖𝑦 − 𝐺(𝑥, 𝑧)‖1] 

𝐺∗ = arg min max ℒ𝐺,𝐷
𝑐𝐺𝐴𝑁 + 𝜆ℒ𝐿1(𝐺)           

          [2] 
 

where 𝐺∗is the optimized design, 𝐺 is random noise 𝑧 sampled from a distribution 𝑝𝑧(𝑧), G the 

generator and D the discriminator, 𝑦𝑟  is the real sample, 𝑦𝑔 the fake sample. To demonstrate the 

effectiveness of the topology optimization with AI, we conducted a static analysis on the cantilever beam 

showen in figure 2. The structure, measuring 120x60 mm, is fixed at point A and supports forces 𝐹𝑥 =
0.5 𝑁 and 𝐹𝑦 =  0.87 𝑁. With an element size of 1 mm, this results in a total of 7200 elements. The 

topology optimization parameters include a volume fraction vf=0.4 and a penalization factor p=3. 

 

Figure 2. Cantilever beam model 
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3. Results and discussion 

The optimal shape after 33 iterations is presented in Figure 3. The computation time for this result 

was 54 seconds using an ASUS computer Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz   1.99 GHz 

RAM 16,0 Go. Table 1 presents the maximal Von Mises stress, the maximal directional displacement in 

the Y direction, and the deformation energy. 

Design  

Maximal Von Mises 

stress 

(MPa) 

Maximal displacement 

in Y (10-5 mm) 

Deformation energy  

(10-7 mJ) 

Original  0.138 5.046 1.58 

SIMP 0.297 9.09 5.17 

TopologyGAN 0.809 51.097 41.79 

Table 1. Static analysis results 

The results of topology optimization using the SIMP method and TopologyGAN (Nie et al., 2021) 

are presented in Figure 3. 

 
a)         b) 

Figure 3. Optimal model of cantilever beam, (a) SIMP result, (b) TopologyGAN result 

First the comparison of SIMP results with the original design, the structure's weight is reduced by 

40%, but the maximal stress increases by 2.15 times, the maximal displacement by 1.8 times, and the 

deformation energy by 3.27 times.  

Second the comparison of TopologyGAN results with the original design, the structure's weight is 

reduced by 46%, but the maximal stress increases by 5.86 times, the maximal displacement by 10.12 

times, and the deformation energy 26.45 times.  

Finally, the comparison of TopologyGAN results with the SIMP results, the maximal stress increases 

by 2.72 times, the maximal displacement by 5.62 times, and the deformation energy 8.08 times.   

4. Conclusion  

In this work, we evaluated the topology optimization performance of a deep learning-based 

methodology, namely TopologyGAN, with that of the conventional SIMP method. Our results show that 

the SIMP approach leads to increased peak stress, displacement, and deformation energy, even if it 

significantly reduces structural weight by 40%. On the other hand, TopologyGAN shows promise in 

yielding optimal designs with enhanced accuracy and computational economy. Using AI methods to 

enhance topology optimization frameworks offers a viable path toward creating structure designs that 

are both creative and high-performing. Subsequent research ought to concentrate on improving these AI-

based techniques even more and investigating how they might be used to solve a wider variety of 

engineerings issus. 
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