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RÉSUMÉ. Identifier la bonne dose ou la dose optimale est l’une des difficultés majeures rencontrées lors du développe-
ment d’un médicament. Par conséquent, l’étude dédiée à la détermination de la dose est une étape clé dans le dévelop-
pement du médicament et des progrès méthodologiques relatifs à l’analyse de ces études ont été accomplis récemment,
en mettant davantage l’accent sur l’identification du profil dose-réponse de l’efficacité. L’étude de détermination de dose
avec un design fixe, placebo-contrôlée, en groupe parallèles est toujours la norme, mais les essais adaptatifs présentent,
dans certains cas, de plus en plus d’intérêt. Le but de cet article est de revoir les méthodologies les plus récentes pour
les essais adaptatifs de détermination de dose : ces méthodes sont applicables dans les cas où une ou plusieurs doses
sont abandonnées après l’analyse intermédiaire, ou encore lorsque seule la répartition des patients est modifiée après
l’analyse intermédiaire. Cette revue est complétée par des simulations illustrant ces méthodologies, y compris une version
en deux étapes de la méthode MCP-Mod proposée par les auteurs.
ABSTRACT. Identifying the right, or the optimal, dose is one of the major difficulty during drug development. As a
consequence, the dedicated dose-finding study is a key milestone in the drug development and recent methodological
progress has been made for the analysis of those studies, in putting more emphasis on the identification of the efficacy
dose-response profile. The placebo controlled, parallel group, fixed design is still a standard for the dose-finding studies,
but adaptive designs are becoming more attractive in some cirumstances. The aim of this paper is to review the most
recent methodologies for adaptive dose-finding trials : those methods are applicable in the cases when one or several
doses are dropped after the interim analysis as well when only the patient allocation is modified after the interim analysis.
This review is complemented by simulations illustrating the methodologies, including a two-stage version of the MCP-Mod
method proposed by the authors.
MOTS-CLÉS. Essais adaptatifs, Optimisation du design, Sélection de dose, Dunnett, MCP-Mod, Tests multiples, Deux
étapes.
KEYWORDS. Adaptive trials, Design optimization, Dose selection, Dunnett, MCP-Mod, Multiple testing, Two-stage.

1. Introduction

It is generally accepted (Sacks et al. 2014), that the dose-finding methodology is a key factor of success
or failure in the phase III and later phases of the drug development. Consequently the dose-finding stu-
dies play a major role in drug development, these studies should be rigorously and efficiently designed.
Apart from the oncology indications, in most cases, traditional dose-finding methodologies were essen-
tially driven by multiple testing procedures : the highest well tolerated dose amongst those significantly
(in using a suitable multiple testing procedure that controls the global type I error) superior to the control,
with respect to the efficacy criterion in the dose-finding phase II study, was selected for later phases. As
the need for more sound and informative approaches became more clear, more recent approaches moved
the methodology from the multiple testing methods to the "modeling" based methods with the MCP-Mod
(Mutiple Comparison Procedure and Modeling) approach (Bretz et al. 2005). Now current trend, in this
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same spirit, is clearly to consider the dose selection as a statistical estimation problem and not anymore
as a multiple testing problem.

In the following subsection, we will describe the methodologies related to both traditional and recent
approaches in the analysis of dose-finding trials as well as the methodology related to adaptive designs,
in particular the two-stage combination test. Section 2 is dedicated to the application of two-stage adap-
tive designs to dose-finding trials ; we particularly propose a two-stage version of the MCP-Mod method.
In Section 3, simulation study examples are conducted, under several dose-response scenarios, in order
to assess operating characteristics of two-stage designs, based on multiple testing or MCP-Mod, and to
evaluate the gain offered by deviating from the classical balanced randomization scheme.

1.1. Methodology for dose-finding trials

Multiple testing approach

Multiple testing procedures were traditionnaly considered in dose-finding studies when the primary
objective was to conclude whether one, or possibly more than one, dose was significantly superior than
the control (placebo) with respect to the primary efficacy criterion. In this context, the main concern is
the control (if possible in its strong sense 1) of the type I error. A large number of multiple comparison
procedures are available : we can mention Bonferroni (Henning and Westfall 2015), closed testing pro-
cedures like Hommel (Hommel 1988) and Hochberg (Hochberg 1988), and Dunnett (Dunnett 1955). We
briefly present the last two approaches.

Closed testing procedure The closed testing procedure (Henning and Westfall 2015) are now amongst
the most popular approaches for multiple comparisons. It can be described as follows :

let µk = Ek(Y ) be the expectation of the variable Y in dose arm k (with k = 0 representing the placebo
group) ; we can form the K elementary hypotheses of interest : H0,1 : µ1 = µ0, ..., H0,K : µK = µ0

(i) then all possible set of intersection of hypotheses are built : for each v ⊆ {1, ..., K} we define
Hv

0 = ∩j∈vH0,j ,

(ii) for each intersection test a local α-level test is built

(iii) and then an elementary hypothesis H0,i is rejected if all the intersection tests Hv
0 that contain H0,i

are rejected at α level.

It can be shown that this procedure controls the type I error in the strong sense. In practice, the popular
Hommel (Hommel 1988) or Hochberg (Hochberg 1988) methods (widely used for dose-finding studies
as well) are examples of closed testing procedures (Henning and Westfall 2015).

Dunnett procedure The classical "Dunnett’s test" (Dunnett 1955) is a multiple comparison proce-
dure used to compare each of several treatments with a single control. It consists on conducting Student’s
t-statistic successively to every treatment/experimental group compared to a single control group and
then to compute simultaneous confidence intervals for the contrasts µk − µ0, taking into account of the

1. i.e. under any combination of true and false null hypotheses

c© 2019 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr/Biostatistics and Health Sciences. BHS. Vol. 1, No 1, 72-88. Page | 2



correlation between the (Ȳk − Ȳ0)k terms (through the common term Ȳ0), where Ȳk is the average res-
ponse within dose arm k. For the following, we will assume without loss of generality that the common
standard deviation of the response Y is σ = 1, we will note n the common sample size within each dose

arm, Zk =
1√
2

Ȳk − Ȳ0√
1/n

the standardized mean treatment difference for any arm k.

Concretely a dose (from dose arm k for instance) is considered as significantly superior to placebo if
Ȳk − Ȳ0 ≥ σ̂dK,α where dK,α is a constant that depends on the number of doses, K, and the α level. It is
also possible to derive an adjusted global p-value for the testing that there is at least one dose superior to
placebo. Calling HK

0 the hypothesis, µi = µ0,∀i ≤ K, the test p-value is

p = PHK
0

(max
k≤K

Zk ≥ max
k≤K

zobsk )

= 1− PHK
0

(max
k≤K

Zk ≤ max
k≤K

zobsk )

= 1− P (∀k ≤ K,Zk ≤ max
k≤K

zobsk )

Under HK
0 , and for any number B, we have :

P (∀k ≤ K : Zk ≤ B) = E[P (∀k ≤ K : Zk ≤ B| Ȳ0√
1/n

)]

= E[P(∀k ≤ K, Ȳk

√
1

n
≤
√

2B + Ȳ0

√
1

n
| Ȳ0√

1/n
)]

= E[
∏
k≤K

P (∀k ≤ K, Ȳk

√
1

n
≤
√

2B + Ȳ0

√
1

n
| Ȳ0√

1/n
)] (since all Ȳk are independent)

=
∫

[Φ(x)(
∏
k≤K

(1− Φ(
√

2B + x)))] dx (since Ȳk

√
1

n
∼ N(0, 1) and Ȳ0

√
1

n
∼ N(0, 1)) 2

=
∫

[Φ(x)((1− Φ(
√

2B + x)))K ] dx.

Finally we obtain,

p =

∫
[Φ(x)(

∏
k≤K

(1− Φ(
√

2max
k≤K

Zobsk + x)))] dx

=

∫
[Φ(x)((1− Φ(

√
2max
k≤K

Zobsk + x)))K ] dx

It is important to notice that there is another "standard" (as opposed to the Adaptive Dunnett’s test that
we will present in the next sections) version of Dunnett’s test, sometimes called the step-down Dunnett’s
test. This version of the test uses the closed testing procedure associated to the following local tests :
Hv

0 , v ⊆ {1, ..., K} defined by µi = µ0,∀i ∈ v are rejected if maxi∈v Ȳi − Ȳ0 ≥ σ̂d|v|,α where |v| is
the number of elements in v. Because the constants d|v|,α are ≤ dK,α (the constant for the usual test), we
can conclude that this step-down version is slightly more powerful than the standard one. Using exactly
the same calculations as above, we can deduce p-values for the local tests of the step-down version :
pv =

∫
[Φ(x)((1− Φ(

√
2max
k∈v

Zobsk + x)))|v|] dx

2. Φ(.) is the distribution function of the standard N(0, 1) law
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Dose-response modeling approach : MCP-Mod

The MCP-Mod procedure (Bretz et al. 2005) is a new methodology for analyzing the dose-finding stu-
dies that has an increasing popularity. It involves two steps : MCP and Mod steps respectively. The first
step, MCP, is associated to the evidence of a drug effect over the doses (strictly speaking, when a signi-
ficant dose-response signal for the clinical endpoint is noticed) using a predefined set of M candidate
models (Emax, linear, exponential, etc...). Optimal linear contrasts of dose group means are computed
for each candidate dose-response models 3. A multiple comparison procedure is applied, controlling the
alpha level for the family of null hypotheses associated with the contrasts. The idea behind this method

is to compute a threshold dM so that PH0[max
m≤M

c
′

mµ̂

σ(̂c′mµ̂)
≥ dM ] = α, where µ̂ = (µ̂1, ..., µ̂K)′ is the vec-

tor of empirical mean responses in dose arms, cm is the optimal linear contrast associated to the model
m, m = 1, ...,M (c

′

m, like for all matrices in the following, represents the transpose of cm), and H0 is
the set of null hypotheses corresponding to all the contrasts c1, ..., cM ; then we accept models where
c
′

mµ̂

σ(̂c′mµ̂)
≥ dM .

Note that this test satisfies the closed testing principle since dv ≤ dM when v is a subset of {1, ...,M}.

Therefore, by tabulating the law of Zv = max
m∈v

c
′

mµ̂

σ(̂c′mµ̂)
, we seek the threshold dv such that PHv

0
=

(max
m∈v

c
′

mµ̂

σ(̂c′mµ̂)
≥ dv) = α and we reject Hv

0 if max
m∈v

c
′

mµ̂

σ(̂c′mµ̂)
≥ dv, where Hv

0 is the set of null hypotheses

corresponding to the contrasts cm, for m ∈ v.

After detecting a dose-response signal, the process is continued and advanced to the next step, the Mod
step. This latter step is dedicated to the search of the Minimal Effective Dose or doses that achieve a
targetted fraction of the maximal drug effect

All MCP-Mod applications presented later in this article were implemented using the MCP-Mod R pa-
ckage developed in (Bornkamp et al. 2009).

1.2. Two-stage adaptive design

The two-stage procedure is a general testing procedure that enables to combine the results of two inde-
pendent tests, summarized by their p-values, in a global test which, based on a particular combination of
the two p-values, enables to control the type I error at any pre-specified level. The procedure, presented
in details in (Bauer and Kieser 1999), is briefly described in the following.

In order to reject Hv
0 one must do :

1. a local test of Hv
0 with the stage 1 analysis which gives us pv1

2. a local test of Hv
0 with the stage 2 analysis which gives us pv2

3. For this step it is necessary, to consider a particular parameter as known, or fixed at a "guesstimate" value
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3. a combined/global test (i.e. "Two-stage procedure") by using the inverse normal combination
function defined as follows :
pv∗ = C(pv1, p

v
2) = 1− Φ(w1Φ

−1(1− pv1) + w2Φ
−1(1− pv2)), where w2

1 + w2
2 = 1.

Under Hv
0 , we have w1Φ

−1(1− pv1) + w2Φ
−1(1− pv2) ∼ N(0, w2

1 + w2
2 = 1).

Then, Hv
0 is rejected if pv∗ ≤ α.

Combining different phases in the development of medical treatments within a single trial was discussed
in (Bauer and Kieser 1999). In their paper, the authors explained the general two-stage procedure, as
well as the procedure when assuming an order relation among the parameters. They also presented a
simulation study with different scenarios and computed the relative power for global hypothesis for each
proposed scenario. They finally discussed the sample size reassessment.
In (Vandemeulebroecke 2006), the author proposes a general framework for two-stage tests that encom-
passes the combination test mentionned above, and provides a link with the conditional error function
approach, including the adaptive Dunnett test which is described thereafter.

2. Two-stage adaptive design applied to dose-finding trials

We will now focus on the cases when the dose-finding studies are adaptive. We will essentially cover
the following situations :

(i) the sponsor might choose a seamless phase II/phase III design for operational reasons : at interim
analysis some doses are dropped and the remaining one(s) is used for the phase III part of the trial

(ii) the sponsor might be obliged to drop some doses at interim analysis for safety reasons or futility
(unethical to keep patients at doses that clearly show no efficacy)

(iii) the sponsor might decide to perform an interim analysis and then modify the design (modify patient
allocation to doses) in order to optimize it.

For the first two situations only non-model based methods are appropriate (because if only 1 or 2 doses
are available at second stage, it is not possible to estimate dose effect models at stage 2). For this purpose
we will present some methods inherited from Dunnett’s test. For the third situation, we will consider
some methods based on MCP-Mod approach.

2.1. Non dose-response model based two-stage

Two-stage Dunnett Combination test

As already explained in the previous section, the idea is to locally test Hv
0 hypothesis, at a level α, and

a Dunnett test is commonly applied. Let pvi be the adjusted p-value of the standard Dunnett test, where i
is the index representing each stage (stage 1 and stage 2), i.e. i = {1, 2}. In order to reject Hv

0 we must
perform :

1. a local Dunnett test of Hv
0 with the stage 1 analysis which gives us pv1

2. a local Dunnett test of Hv
0 with the stage 2 analysis which gives us pv2

3. a global Dunnett test by using the inverse normal combination function defined in the previous
section
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Adaptive Dunnett test

The adaptive Dunnett procedure as presented in (Koenig et al. 2008), is based on the closed test prin-
ciple and the conditional error function approach suggested in (Müller and Schäfer 2001). This approach
can be summmarized as follows : in order to test any single hypothesis H in an adaptive way, we
can first define a function A from the sample space of the first stage denoted by X1, to [0, 1], so that
EH(A(X1)) ≤ α (A(.) is called the conditional error function). Then, by using any test based on the
data of the second stage only resulting in a p-value, named q, we can define a global test that rejects
hypothesis H whenever q ≤ A(X1) : this procedure controls the type I error.
This approach is generalized in (Müller and Schäfer 2001), in order to allow that the second stage ana-
lysis involves the first stage data as well, provided that the sample size, n is fixed. Starting from any test
ϕ, (ϕ = 1 means reject H), in defining the conditional error function, A(X1) = EH(ϕ = 1|X1), we can
define a global test if, for any p-value, q (q is p-value if q has, underH , a uniform distribution over [0, 1]),
we have : q ≤ A(X1) = EH(ϕ = 1|X1). An important feature of this approach is that the original test ϕ
can be applied if no adaptations are performed.

This approach is applied using the Dunnetts’ test and the closed test principle in (Koenig et al. 2008) in
order to define the adaptive Dunnett test. The derivation of the adaptive Dunnett test is summarized the-
reafter : the aim is to test local hypotheses Hv

0 where v ⊆ {1, ..., K}. The same notations as in Section
1.1 are used : Zk represents the standardized mean difference vs placebo and Z(1)

k , Z
(2)
k represent the

same quantity but with only the data from the first stage and second stage respectively.

Stage 1 Conditional error function
The stage 1 conditional error function is defined by Av(X1) = PHv

0
(ϕv = 1|X1), where X1 represents

the stage one data and ϕv represents the global test (with data of stage 1 and stage 2). Therefore, we can
write PHv

0
(ϕv = 1|X1) = PHv

0
(max
k∈v

Zk ≥ dv|X1).

Using the same notations and methods as for the derivation of the global Dunnett p-value above, it is

shown in (Koenig et al. 2008) that Av(X1) = 1 −
∫

Φ(x)(
∏
k∈v

(1 − Φ(
√

2

√
ndv −

√
n1Z

(1)
k√

n− n1
+ x))) dx.

Starting from this conditional error function, as detailed in (Koenig et al. 2008), there are two possibili-
ties for the second stage p-values : they are described thereafter.

Separate stage 2 Dunnett p-value
In this approach, the second test only involves the data from the second stage. We can derive the p-value
of the Dunnett test for the data of the second stage only, knowing that some doses could have been
dropped : qSv = PHv

0
( max
k∈v∩F2

Z
(2)
k ≥ max

k∈v∩F2

Z
(2),obs
k ), then qSv = 1 −

∫
Φ(x)((1 − Φ(

√
2 max
k∈v∩F2

Z
(2),obs
k +

x)))|v∩F2| dx where F2 is the set of retained doses at stage 2. By application of the method, the final test
associated to hypothesis Hv

0 is signiticant if qSv ≤ Av(X1), see (Koenig et al. 2008).

Conditional stage 2 Dunnett p-value
In this approach, the second stage p-value involves the totality of the database.
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It is defined by qCv = PHv
0
( max
k∈v∩F2

Zk ≥ max
k∈v∩F2

Zobsk |X1).

It is equal to : qCv = 1−
∫

Φ(x)(
∏

k∈v∩F2

(1− Φ(
√

2

√
n max
k∈v∩F2

Zobsk −
√
n1Z

(1)
k

√
n− n1

+ x))) dx.

The global test is significant if qCv ≤ Av(X1). An important property shown in (Koenig et al. 2008) is
that if the local hypothesis tested, Hv

0 , only involves doses retained in second stage then the conditionnal
Stage 2 Dunnett test corresponds to the standard Dunnett test. This property is not verified by the Sepa-
rate two-stage version.

Then the closed testing procedure is applied : to test the global hypothesis that at least one dose is superior
to placebo then the method is applied to the local test Hv

0 with v = {1, ..., K} ; and to test whether a
particular dose dk is superior to placebo the method is applied to all local tests Hv

0 , v ⊆ {1, ..., K}, such
that k ∈ v.

Properties and practical implementation In (Koenig et al. 2008), properties and practical imple-
mentation of the adaptive Dunnett’s test has been also assessed, through simulations. For this purpose the
authors simulated various scenarios of dose adaptation, and compared the adaptive Dunnets’s procedure
(the conditional second stage version), the two-stage Dunnett’s procedure with combination test and the
"classical" Dunnett’s test (but in its step-down version). From those simulations, involving two doses and
a placebo, the authors concluded to the superiority of the adaptive Dunnett test :

(i) in case of no adaptation, the adaptive Dunnett (which is equivalent, in its conditional stage two
version, to the standard Dunnett) is superior to the two-stage combination Dunnett test.

(ii) when the adaptation consists in dropping the dose with lowest observed mean at interim analysis,
then adaptive Dunnett is only slightly superior to two-stage combination Dunnett (they are almost
equivalent), and both are superior to the "standard" step-down Dunnett.

(iii) when adaptation does not depend on efficacy (mimicking situations when drop of dose is induced
by safety reasons) then adaptive Dunnett is slightly superior to two-stage combination Dunnett and
both are generally superior to the "standard" step-down Dunnett.

2.2. Two-stage MCP-Mod

We describe here a new application of the two-stage combination test, that we propose, as described
in Section 1.2, to MCP-Mod procedure, for dose-finding trials. If we define local hypotheses Hv

0 defined
by subset of the list of candidate dose-response models, we can perform a combined two-stage test as
follows. If pvi is now the adjusted p-value of the MCP-Mod test, and to reject Hv

0 , we must perform :

1. a local MCP-Mod test of Hv
0 with the stage 1 analysis which gives us pv1

2. a local MCP-Mod test of Hv
0 with the stage 2 analysis which gives us pv2

3. a combined MCP-Mod test by using the inverse normal combination function previously defined

Then, Hv
0 is rejected if pv∗ ≤ α.

To globally test if there is at least one "significant" dose-response model, the test proposed above is
performed with v being the whole set of dose-response models.

c© 2019 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr/Biostatistics and Health Sciences. BHS. Vol. 1, No 1, 72-88. Page | 7



2.3. Design optimization

In this section, we will discuss design optimality issues with the objective to assess how interim analysis
can be used to optimize the design. There are several definitions and approaches for design optimization :
we will use the Bayesian Optimal Design approach of (Miller et al. 2007).

Bayesian Optimal Design for dose-finding studies

The Bayesian optimality criterion proposed in (Miller et al. 2007) can be described as follows :

(i) A parametric dose-response model is chosen : we have chosen the Sigmoid-Emax model that assi-

gns to a dose x, the mean dose-response f(x, θ) = E0 +
Emaxx

α

EDα
50 + xα

, θ = (E0, Emax, ED50, α)′.

(ii) A set of scenarios is defined : to each of it a specific parameter value θscenario is chosen as well as
a prior probability πscenario, that the corresponds to the prior belief in the scenario.

(iii) The efficiency of the design at a given dose x is derived from the asymptotic variance of the contrast
vs placebo (computed using the delta-method).
It is proportional to the quantity called d(x, design, θ) = (g(x, θ) − g(0, θ))′M−1(g(x, θ) −

g(0, θ)), where g(x, θ) =
∂f(x, θ)

∂θ
and M(design, θ) =

∑
k wkg(xk, θ)

′g(xk, θ) is the Fisher
information matrix and wk is the percentage of patients assigned to dose arm k. The efficiency of
the design at dose x is the inverse of this quantity : 1/d(x, design, θ).

(iv) Now if we do not limit to a single dose, but we want to assess the efficiency over a range of
doses [xδ, xmax], where xδ that gives a mean difference of δ versus placebo (the dose such that
f(xδ) − f(0) = δ) ; then, it is defined as : Φc(design, θ) = (

∫ xmax
xδ

d(x, design, θ) dx)−1.
We define the relative efficiency of an arbitrary design with respect to the balanced design by
Effc(design, θ) = Φc(design, θ)/Φc(balanced, θ).

(v) Using the various scenarios and their prior beliefs, we can define the efficiency of the design :
Ψ(design) =

∑
j πjEffc(design, scenario = θj),

where Effc(design, scenario = θj) =
(
∫ xmax
xδ,j

d(x, design, θj) dx)
−1

(
∫ xmax
xδ,j

d(x, balanced, θj) dx)−1 .

Application of two-stage design optimization : re-allocation of patients

Adaptive designs have always been essentially used in the last two decades, in order to select doses, or
more precisely to drop doses that appear unsafe or unefficient. Recently, these designs were used in a
different context, which is the optimization of stage 2 by optimizing patients allocation, see (MacCal-
lum and Bornkamp 2015), (Geiger et al. 2012, (Christen et al. 2004) and (Grieve 2017). More precisely,
adaptation may also turn into a modification of the dose allocation ratio putting more emphasis on the
most promising doses or even increasing sample size to tentatively rescue a poorly responsive trial. We
will now focus on this same problem of optimization of a the second stage of the design using the tools
and methodologies above described.
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Adaptive Bayesian optimal design
In the following, we present the calculations shown in (Miller et al. 2007), but assuming, to simplify, that
there is no delay between the conduct of the interim analysis and the enrollment of the patients for stage
2 (and then no enrollment during the conduct of the analysis itself). The optimization of the second stage
of the design is conducted as follows.
Let n(1)i be the number of patients for the dose di at stage 1, the first step consists in up-dating the prior be-
liefs, πj , of the scenarios θj ; to do this, it is first assumed that the responses are normally distributed, then

for each dose, the observations means Ȳ (1)
0 , ..., Ȳ

(1)
K are independent, and Ȳ (1)

i ∼ N(f(xi),
σ2

n
(1)
i

). We are

interested in Ȳ (1)
i − Ȳ (1)

0 , the differences between observations means for each dose and placebo. These
differences have a multivariate normal distribution, N(µ, σ2Σ), where µ = (f(x1)− f(x0), ..., f(xK)−
f(x0))

′, i = 1, ..., K. Hence, the covariance matrix is :

Σ =


1/n

(1)
0 + 1/n

(1)
1 1/n

(1)
0 · · · 1/n

(1)
0

1/n
(1)
0 1/n

(1)
0 + 1/n

(1)
2 1/n

(1)
0

... . . .

1/n
(1)
0 · · · 1/n

(1)
0 1/n

(1)
0 + 1/n

(1)
K


Let’s denote hj , the density of this multivariate distribution for Scenario θj , the updated probabilities can
be calculated conforming to the following :
πj,updated = πj.hj(Ȳ

(1)
1 − Ȳ (1)

0 , ..., Ȳ
(1)
K − Ȳ (1)

0 )/[
∑nb of scenarios

t=1 πt.ht(Ȳ
(1)
1 − Ȳ (1)

0 , ..., Ȳ
(1)
K − Ȳ (1)

0 )],
where πj , πj,updated are respectively the prior and posterior probabilities for Scenario θj .
Then optimal design for the second stage are determined in optimizing :
Ψ(design) =

∑
j πj,updatedEffc(design, scenario = θj).

In concrete terms, the weights defining the design for the second stage can be optimized in two different
ways :

(i) either the final analysis includes the data of the interim analysis also, like in (Miller et al. 2007) :
then the new weights are constrained by wi ≥ w

(1)
i = n

(1)
i /ntotal and the number of patients to

enroll in second stage is n(2)i = wi.ntotal − n(1)i
(ii) or the final analysis does not mix the interim analysis data and the second stage data (like in two-

stage testing) then the optimization in the weightswi is unconstrained and n(2)i = wi(ntotal−n(1)total).

3. Simulations

We complemented this review of methodology by simulations illustrating the application of the me-
thods above described. Two sets of simulations were conducted :

(i) The first objective was to compare two-stage Dunnett testing with two-stage MCP-Mod testing. For
Dunnett test we focused on the two-stage combination test, instead of the adaptive Dunnett test, to
allow an easier comparison with MCP-Mod two-stage.

(ii) The second objective was to assess the efficiency of the optimal design approach (both adaptive
and non adaptive).

In those simulations, the objective is to test that there is at least one dose superior than placebo, for
Dunnett’s test (i.e. the local hypothesis Hv concerns the whole set of doses {d1, ..., dK}, and at least one
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model associated with a "significant" dose-response for MCP-Mod (corresponds to the MCP step)). In
the simulations below the combined two-stage test is performed using the weights w1 = w2 =

√
1/2.

3.1. Simulation study : comparison of MCP-Mod versus Dunnett approach

In this set of simulations, we simulated 10000 studies with the following design :
– Five Doses=(0,0.25,0.5,0.75,1)
– N = 30 patients per dose
– For all scenarios, the variability is set to σ2 = 1

– The doses are to be compared to placebo (Dose=0) with one sided test at level α = 0.025

The five following methods will be compared : Dunnett global test, MCP-Mod global test, the two-
stage Dunnett test and the two-stage MCP-Mod test that we propose. The power of each method will be
estimated by :

p̂ower =
#successful studies

#studies
, for each scenario.

Five scenarios are considered : for all of them, the maximum effect is equal to 1, and the highest dose
has always the highest effect ; they are explicited thereafter :

– Scenario 1 : linear response, mean response by dose=(0,0.25,0.5,0.75,1)
– Scenario 2 : linear delayed response, first 2 doses have no efficacy, then linear increase, mean res-

ponse by dose=(0,0,0,0.5,1)
– Scenario 3 : ’flat’, all doses have the same efficacy, mean response by dose=(0,1,1,1,1)
– Scenario 4 : ’plateau’, linear start, then last 2 doses have the same efficacy, mean response by

dose=(0,0.33,0.67,1,1)
– Scenario 5 : ’extreme’, only last dose shows efficacy, mean response by dose=(0,0,0,0,1)

For the global and the two-stage Dunnett, we used the ’asd’ R package, see (Parsons 2016). For global
and two-stage MCP-Mod, we used the global MCP-Mod function of the ’MCPMod’ R package 4, see
(Bornkamp et al. 2017).

Results

In Table 3.1, power is given for each test (Dunnett global test, MCP-Mod global test, two-stage Dun-
nett test and two-stage MCP-Mod test), estimated by the percentage of studies having a p-value ≤ 0.05.

4. to compute the guesstimates (i.e. MCP-Mod assumptions), it is assumed that dose 1 reaches 90% of the maximal effect, and dose
0.25 reaches 25% of the maximal effect
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− Dunnett global test MCP-Mod global test two-stage Dunnett two-stage MCP-Mod
Scenario 1 0.95 0.99 0.93 0.99
Scenario 2 0.92 0.98 0.89 0.98
Scenario 3 0.99 1 0.99 1
Scenario 4 0.98 1 0.97 1
Scenario 5 0.92 0.90 0.87 0.88

Tableau 3.1.: Power comparison of global Dunnett, global MCP-Mod, two-stage Dunnett and two-stage MCP-Mod, for
the five chosen scenarios, Scenario 1 to Scenario 5

In Table 3.2, the student test power of the highest dose versus placebo is given, for 30 patients and 75
patients per arm respectively.

− 2 arms (placebo vs high dose) : 60 patients 2 arms (placebo vs high dose) : 150 patients
Scenario 1 0.96 0.99
Scenario 2 0.96 0.99
Scenario 3 0.96 0.99
Scenario 4 0.96 0.99
Scenario 5 0.96 0.99

Tableau 3.2.: Student test power comparison, for the five chosen scenarios, Scenario 1 to Scenario 5

We can notice from the simulations (Tables 3.1 and 3.2) that :
– The two-stage procedures are less powerful than their corresponding single testing procedures
– The MPC-Mod procedure is superior than Dunnett’s procedure, both two-stage and global tests,

except for Scenario 5 ; for this latter scenario this might due to the fact that this efficacy profile could
not be reproduced in any of the dose-response functions we considered in MCP-Mod (Emax and
logistic) ; to fix such a problem, one can enrich the MCP-Mod family of functions with a Sigmoid-
Emax function : this is what we have done for the simulations presented in the next sections

– For a total fixed number of patients, the most powerful test is to compare the highest dose versus
placebo (75 patients per group with a student test (see Table 3.2)).

Globally, we conclude that two-stage testing without any adaptation is not useful and that MCP-Mod
procedure is generally superior than Dunnett’s in both single stage and two-stage versions.

3.2. Optimal Bayesian design simulations

We will now assess, through simulations, how Bayesian optimal designs can improve the performance
of the methods presented, in particular to which extent optimal patients re-allocation can improve the
performance of the two-stage testing procedures.
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Simulated Design
We simulated 1000 studies with the following design :

– Five Doses=(0,0.25,0.5,0.75,1)
– N = 16 patients per dose
– For all scenarios, the variability is set to σ2 = 1

– The doses are to be compared to placebo (Dose=0) with one sided test at level α = 0.025

For comparison purpose, we also simulated 1000 studies with a total of 80 patients, with the patients
allocation weights derived from optimal design computation.

Simulated Scenarios
We simulated seven scenarios :

– Scenario 1 : linear response, mean response by dose=(0,0.25,0.5,0.75,1)
– Scenario 2 : linear delayed response, first 2 doses have no efficacy, then linear increase, mean res-

ponse by dose=(0,0,0,0.5,1)
– Scenario 3 : ’flat’, all doses have the same efficacy, mean response by dose=(0,1,1,1,1)
– Scenario 4 : ’plateau’, linear start, then last 2 doses have the same efficacy, mean response by

dose=(0,0.33,0.67,1,1)
– Scenario 5 : ’extreme’, only last dose shows efficacy, mean response by dose=(0,0,0,0,1)
– Scenario 6 : ’Exponential type’, slow efficacy then fast efficacy for high doses, mean response by

dose=(0,0.02,0.08,0.25,1)
– Scenario 7 : ’Emax type’, fast efficacy then progressive plateau, mean response

by dose=(0,0.4,0.70,0.95,1)

These scenarios are graphically presented in Figure 1. In this figure, Scenario i is denoted by Si, 1 ≤ i ≤
7.

Figure 1.: Graphical representation of the seven chosen scenarios, Scenario 1 to Scenario 7
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Optimal Design computation
Table 3.3 summarizes the five chosen scenarios for the Sigmoid-Emax model, followed by their corres-
ponding dose-response curves (Figure 2), that were used to compute the optimal design :

name parameter prior proba
Primary E0 = 0, Emax = 1.25, ED50 = 0.25, α = 1 π = 0.40

Quasi-linear E0 = 0, Emax = 48, ED50 = 48, α = 1 π = 0.15

Plateau E0 = 0, Emax = 1, ED50 = 0.015, α = 1 π = 0.15

Sigmoid-1 E0 = 0, Emax = 1.45, ED50 = 0.9, α = 8 π = 0.15

Sigmoid-2 E0 = 0, Emax = 1, ED50 = 0.45, α = 5 π = 0.15

Tableau 3.3.: Sigmoid-Emax parameter values, for the five chosen scenarios

Figure 2.: Dose-response curves for the five chosen scenarios, based on Sigmoid-Emax model

Computational aspects To compute the optimal design, the δ value (the lowest difference of interest
versus placebo) was set to 0.5 and we used ’optim’ function in R for the optimization part and we added
a constraint : exclude the possibility of having no patients in stage 2 for a given dose. Concerning MCP-
Mod, Sigmoid-Emax family was added to the set of candidate dose-response functions and to compute
the guesstimates (i.e. MCP-Mod assumptions), it was assumed that 1 mg reaches 90% of maximal effect,
and 0.25 mg reaches 25% of maximal effect.
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Results

Table 3.4 shows the power of Dunnett global test, MCP-Mod global test, two-stage Dunnett test, and
two-stage MCP-Mod test, based on the 7 scenarios described above, with 1000 studies simulated for
each scenario, in the following three design versions :

– balanced design
– optimal design : the optimal weighs obtained were : w∗ = (0.308, 0.156, 0.299, 0.073, 0.163)′

– two-stage optimal design : 40 + 40 patients ; the design of the first part is the optimal design based on
prior beliefs (like above) and the design of the second part is based on the updated beliefs following
the interim analysis

− Dunnett global test MCP-Mod global test two-stage Dunnett two-stage MCP-Mod
Scenario 1 :

balance
0.71 0.84 - -

Scenario 1 :
optimal

0.78 0.88 0.67 0.82

Scenario 2 :
balance

0.65 0.81 - -

Scenario 2 :
optimal

0.72 0.77 0.38 0.62

Scenario 3 :
balance

0.91 0.90 - -

Scenario 3 :
optimal

0.95 0.97 0.96 0.97

Scenario 4 :
balance

0.81 0.91 - -

Scenario 4 :
optimal

0.83 0.91 0.80 0.92

Scenario 5 :
balance

0.66 0.62 - -

Scenario 5 :
optimal

0.69 0.63 0.32 0.33

Scenario 6 :
balance

0.77 0.90 - -

Scenario 6 :
optimal

0.78 0.90 0.73 0.88

Scenario 7 :
balance

0.74 0.91 - -

Scenario 7 :
optimal

0.73 0.82 0.51 0.78

Tableau 3.4.: Power comparison of global Dunnett, global MCP-Mod, two-stage Dunnett and two-stage MCP-Mod, for the
seven chosen scenarios, Scenario 1 to Scenario 7, three design versions : balanced, optimal and two-stage optimal designs
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In general, as we have noticed in the previous simulations, MCP-Mod is superior than Dunnett : this was
almost always true for the balanced design ; the two only exceptions were Scenario 3 and Scenario 5
which correspond to scenarios with lack of clear dose-response relationship (Scenario 3 : all doses are
equally efficient, Scenario 5 : only last dose is efficient) ; this superiority of MPC-Mod over Dunnett
applies for both balanced and optimal design.

The optimal design is superior to the balanced design in almost all cases, except for scenario 7 for
both Dunnett MCP-Mod and for the second scenario, for MCP-Mod only.

Two-stage designs are generally inferior to the optimal design except for Scenario 3 and Scenario 4
for which the two-stage is slightly superior to the optimal design. For all other scenarios, the two-stage
is inferior to the optimal design (two-stage is particularly bad for Scenario 2 and Scenario 5, cases when
the optimal design does not perform well either) ; in fact when the performance of the optimal design
is poor, the two-stage design does not correct enough. Bad performance of the two-stage design is pos-
sibly due to the weight of stage 2 in the global test : it may be too small and the possibility to take
w2 > w1 in the combination test should be considered. Also the weight of primary guess (π = 0.40) in
the computation of the optimal design could be too strong, and cannot be compensated by the evidence
brought by 40 additional patients : maybe it could be worth considering equal weights in scenario to
compute Bayesian efficiency. Also another possibility for improvement, for the two-stage MCP-Mod,
that is worth considering for future research could be to modify the guesstimates (based on the interim
analysis) when performing the second MCP-Mod analysis.

4. Discussion

In this paper we have reviewed various approaches for the design and analysis of adaptive dose-finding
trials. Even though the placebo controlled, parallel group, fixed design is still a standard for the dose-
finding studies, adaptive designs are more and more used. For the sponsor, design adaptation could be
necessary, for ethical reasons for instance, or could be governed by the objective to gain knowledge at
first step.

Our paper is mostly focused on the two-stage testing procedure, see (Bauer and Kieser 1999), that we
applied to various methods of analysis of dose-finding trials : the traditional multiple testing approaches
(those based on ANOVA and multiple testing), with a focus on Dunnett method, but also more recent
"model-based" approaches in particular the MCP-Mod approach (Bretz et al. 2005).

We have also discussed the application of the two-stage design optimization in order to re-design stage
2, e.g. dose allocation ratio, choice of doses and/or sample size.

We conducted simulation studies in order to extensively assess some of the approaches proposed in the
literature, as well as a new application of the two-stage combination test to the MCP-Mod procedure, that
we proposed. Our simulation results showed that globally, MCP-Mod is better than Dunnett in terms of
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power, optimal designs are better than balanced designs (for both testing procedures), but Dunnett/MCP-
Mod two-stage design generally do not bring improvement as compared to optimal designs.

Our findings suggest improvements in the application of two-stage testing, especially in the context
of MCP-Mod.
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