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ABSTRACT. In this paper, we reconsider and slightly generalize various classes of Weyl almost automorphic functions
([29], [33]). More precisely, we consider here various classes of metrically Weyl almost automorphic functions of the form
F : Rn × X → Y and metrically Weyl almost automorphic sequences of the form F : Zn × X → Y , where X and Y
are complex Banach spaces. The main structural characterizations for the introduced classes of metrically Weyl almost
automorphic functions and sequences are established. In addition to the above, we provide several illustrative examples,
useful remarks and applications of the theoretical results.
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1 Introduction and preliminaries

The class of almost automorphic functions, which generalizes the well-known class of almost periodic
functions, was introduced by S. Bochner in 1955 ([14]). If F : Rn → X is a continuous function, where
(X, ‖ · ‖) is a complex Banach space, then F (·) is said to be almost automorphic if and only if for every
sequence (bk) in Rn there exist a subsequence (ak) of (bk) and a mapping G : Rn → X such that

lim
k→∞

F
(
t+ ak

)
= G(t) and lim

k→∞
G
(
t− ak

)
= F (t), (1.1)

pointwisely for t ∈ Rn. In this case, the range of F (·) is relatively compact in X and the limit function
G(·) is bounded on Rn but not necessarily continuous on Rn. Furthermore, if the convergence of limits
appearing in (1.1) is uniform on compact subsets of Rn, then F (·) is said to be compactly almost auto-
morphic. For further information about almost periodic functions and almost automorphic functions, the
reader may consult the monographs [13, 18, 24, 26, 29, 39, 43].

On the other hand, the theory of (abstract) Volterra difference equations is a rapidly growing field
of research; for more details in this direction, the reader may consult the monographs [5, 6, 7, 21].
Various classes of (multi-dimensional) Bohr ρ-almost periodic sequences and their Weyl, Besicovitch and
Doss generalizations have recently been considered in [36]; in that paper, we have also provided several
applications of generalized ρ-almost periodic sequences to the (abstract) Volterra difference equations.
Concerning the applications of one-dimensional almost automorphic type sequences in this field, we
can recommend for the reader the following research articles [1, 3, 4, 8, 12, 15, 40]. In [38], we have
recently analyzed the multi-dimensional almost automorphic sequences of the form F : Zn ×X → Y,
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where (Y, ‖ · ‖Y ) is a complex Banach space, and provided several applications to the abstract Volterra
difference equations depending on several variables.

The main aim of this research article is to introduce and analyze several new classes of metrically Weyl
almost automorphic functions of the form F : Rn × X → Y and metrically Weyl almost automorphic
sequences of the form F : Zn × X → Y , where X and Y are complex Banach spaces. In such a way,
we continue our recent investigations of metrically Stepanov almost periodic functions [23], metrically
Stepanov almost automorphic functions [16], Weyl almost automorphic type functions [33] (let us recall
that the class of Weyl almost automorphic functions was introduced by S. Abbas [2] in 2012; for more
details about Weyl almost periodic type functions, we refer the reader to [22]) and Bochner almost
automorphic sequences [38]. We provide many illustrative examples, useful remarks and applications to
the abstract fractional integro-differential equations and the abstract fractional difference equations.

The organization of this paper, which is written in a semi-heuristical manner, can be briefly described
as follows. After explaining the notion and terminology used throughout the paper as well as the most
important function spaces needed for our further work, we recall the basic definitions and facts about
the recently considered notion of metrical Stepanov almost automorphy (see Subsection 1.1). Various
classes of metrically Weyl almost automorphic type functions and metrically Weyl almost automorphic
type sequences are introduced and thoroughly analyzed in Section 2. The main purpose of this section
is to clarify the metrical generalizations of the structural results presented in our recent research article
[33] (Proposition 2.5 and Proposition 2.7 are new; see also Example 2.8 for the slight improvements of
the conclusions established in [33] as well as Remark 2.6 and Remark 2.9, where we provide several
important observations about the notion under our consideration).

Section 3, where we provide many supporting examples, investigates the extensions of metrically Weyl
almost automorphic sequences. The main structural results established in this section are Theorem 3.2
and Theorem 3.3. The main purpose of Section 4 is to present some applications of the obtained theoret-
ical results to the abstract fractional integro-differential equations and the abstract fractional difference
equations. In this section, we first examine the convolution invariance of joint Weyl almost automor-
phy and Weyl almost automorphy of type 2; see Proposition 4.1 and Theorem 4.2 for more details. The
second part of this section is devoted to the study of applications to the abstract (fractional) difference
equations. In the appendix section of paper, we consider vectorial Weyl almost automorphic type func-
tions; the final section of paper is reserved for the final comments and remarks about the introduced
notion.

Notation and terminology. We will always assume henceforth that (X, ‖ ·‖) and (Y, ‖ ·‖Y ) are complex
Banach spaces, B is a non-empty collection of non-empty subsets of X and R is a non-empty collection
of sequences in Rn [Zn]. Furthermore, we will always assume henceforth that for each x ∈ X there exists
B ∈ B such that x ∈ B. By L(X,Y ) we denote the Banach space of all bounded linear operators from
X into Y ; L(X,X) ≡ L(X) and I denotes the identity operator on Y. Define N0 := {0, 1, ...,m, ...},
Nm := {1, ...,m} and N0

m := {0, 1, ...,m} (m ∈ N). If A and B are non-empty sets, then we set
BA := {f |f : A → B}; χA(·) [Ac] stands for the characteristic function of the set A [the complement of
A]. Define �s� := sup{k ∈ Z : s ≥ k} and 	s
 := inf{k ∈ Z : s ≤ k} (s ∈ R); if A ⊆ Rn, then its
convex hull is denoted by CH(A).

Assume that 0 < p < 1 and Ω is any Lebesgue measurable subset of Rn with positive Lebesgue
measure. Then Lp(Ω : X) consists of all Lebesgue measurable functions f : Ω → X such that

© 2025 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 9



∫
Ω ‖f(u)‖p du < +∞; the metric on Lp(Ω : X) is given by d(f, g) :=

∫
Ω ‖f(u) − g(u)‖p du for

all f, g ∈ Lp(Ω : X). Let us recall that (Lp(Ω : X), d) is a complete quasi-normed metric space; the no-
tion and properties of the metric space (Lp(Ω : X), d) are well-known if p ≥ 1. Concerning the Lebesgue
spaces with variable exponents Lp(x), we will use the same notion and notation as in the monograph [29]
and the research article [33]. For further information in this direction, we refer the reader to the important
research monograph [19] by L. Diening et al.

In this paper, we deal with the following classes of weighted function spaces:

1. Suppose that the set I ⊆ Rn is Lebesgue measurable and ν : I → (0,∞) is a Lebesgue measurable
function. Of concern is the Banach space

Lp(t)
ν (I : Y ) :=

{
u : I → Y ; u(·) is measurable and ||u||p(t) <∞},

where p ∈ P(I), the collection of all measurable functions from I into [1,+∞], and∥∥u∥∥
p(t)

:=
∥∥u(t)ν(t)∥∥

Lp(t)(I:Y )
.

We similarly define the space Lp
ν(I : Y ) with p > 0.

2. If ν : I → (0,∞) is any function such that the function 1/ν(·) is locally bounded, then the
vector space C0,ν(I : Y ) [Cb,ν(I : Y )] consists of all continuous functions u : I → Y satisfying that
lim|t|→∞,t∈I ‖u(t)‖Y ν(t) = 0 [supt∈I ‖u(t)‖Y ν(t) < +∞]. When equipped with the norm ‖ · ‖ :=

supt∈I ‖ · (t)ν(t)‖Y , C0,ν(I : Y ) [Cb,ν(I : Y )] is a Banach space.

3. Suppose that ν : I → [0,∞) is any non-trivial function. Then we define the vector spaceCb,ν(I : Y )

as above; equipped with the pseudometric d(·, ··) := supt∈I ‖ν(t)[·(t) − · · (t)]‖Y , (Cb,ν(I : Y ), d) is a
pseudometric space.

1.1 Metrical Stepanov almost automorphy

Suppose that Ω ⊆ Rn is a fixed compact set with positive Lebesgue measure. Let Z ⊆ Y Ω, 0 ∈ Z and
let (Z, dZ) be a pseudometric space. Set ‖f‖Z := dZ(f, 0), f ∈ Z.

In [16, Definition 2.1], we have recently introduced the following notion:

Definition 1.1. Suppose that F : Rn × X → Y is a given function and R is a collection of sequences
in R

n. Then we say that the function F (·; ·) is Stepanov (Ω,R,B, ZP)-multi-almost automorphic if and
only if, for every B ∈ B and for every sequence (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R, there exist a subsequence

(bkm = (b1km, b
2
km
, ···, bnkm)) of (bk) and a function F ∗

B : Rn×X → Z such that, for every t ∈ Rn,m ∈ N

and x ∈ B, we have F (t + · + (b1km , · · ·, bnkm);x) − [F ∗
B(t;x)](·) ∈ Z, [F ∗

B(t− (b1km , · · ·, bnkm);x)](·)−
F (t + ·;x) ∈ Z,

lim
m→+∞

∥∥∥F(t+ ·+ (b1km , · · ·, bnkm);x
)− [F ∗

B(t;x)](·)
∥∥∥
Z
= 0,

and

lim
m→+∞

∥∥∥[F ∗
B

(
t− (b1km , · · ·, bnkm);x

)]
(·)− F (t+ ·;x)

∥∥∥
Z
= 0.

We omit the term “B” from the notation for the functions of the form F : Rn → Y . Let p ∈ (0,∞);
then we say that the function F : Rn → Y is Stepanov-p-almost automorphic if and only if F (·) is
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Stepanov (Ω,R, ZP)-multi-almost automorphic with Ω = [0, 1]n, P = Lp([0, 1]n : Y ) and R being the
collection of all sequences in Rn. The notion of Stepanov-p-almost automorphy with a general exponent
p > 0 has recently been introduced by M. Kostić and W.-S. Du in [37], while the notions of Stepanov-p-
almost periodicity and equi-Weyl-p-almost periodicity with a general exponent p > 0 were introduced by
H. D. Ursell [42] in 1931. Although not directly connected with these notions, we would like to mention
here the research article [25] by C. G. Gal, S. G. Gal and G. M. N’Guérékata, where the authors have
considered a class of almost automorphic functions with values in p-Fréchet spaces, where 0 < p < 1.

2 Metrically Weyl almost automorphic functions and metrically Weyl almost automorphic se-
quences

The main aim of this section is to introduce and analyze various classes of metrically Weyl almost au-
tomorphic functions and metrically Weyl almost automorphic sequences as well as to slightly generalize
the notion introduced recently in [29, Section 8.3] (we will continue citing [29] since the paper [33] is
still not published in the final form). Unless stated otherwise, we will always assume henceforth that
Ω := [−1, 1]n ⊆ R

n [Ω := [−1, 1]n∩Z
n ⊆ Z

n], F : (0,∞)×R
n → (0,∞) [F : (0,∞)×Z

n → (0,∞)]
as well as that, for every l > 0, (Pl, dl) is a pseudometric space, where Pl ⊆ Y lΩ [Pl ⊆ Y lΩ∩Zn

] is closed
under the addition and subtraction of functions, containing the zero-function: 0 ∈ Pl. Set ‖f‖l := dl(f, 0)

for all f ∈ Pl (l > 0). We will always assume henceforth that R is a collection of sequences in Rn [Zn];
for simplicity and better understanding, we will not consider here the corresponding classes of functions
with the collections RX of sequences in Rn ×X [Zn ×X].

We will first introduce the following notion, which generalizes the corresponding notion from [29,
Definition 8.3.17, Definition 8.3.18, Definition 8.3.28]:

Definition 2.1. Suppose that F : Rn×X → Y [F : Zn×X → Y ] satisfies that for each x ∈ X, l > 0 and
t ∈ R

n [t ∈ Z
n] we have F (t + ·;x) ∈ Pl. Let for every l > 0, B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R

there exist a subsequence (bkm = (b1km , b
2
km
, · · ·, bnkm)) of (bk) and a function F ∗ : R

n × X → Pl

[F ∗ : Zn ×X → Pl] such that for each x ∈ B, l > 0 and t ∈ Rn [t ∈ Zn] we have:

(i)

lim
m→+∞ lim

l→+∞
F(l, t)

∥∥∥F (t+ ·+ (b1km , · · ·, bnkm);x)−
[
F ∗(t;x)

]
(·)
∥∥∥
l
= 0 (2.1)

and

lim
m→+∞ lim

l→+∞
F(l, t)

∥∥∥[F ∗(t− (b1km , · · ·, bnkm);x)
]
(·)− F (t+ ·;x)

∥∥∥
l
= 0, (2.2)

pointwise for all x ∈ B and t ∈ Rn [t ∈ Zn], or

(ii)

lim
l→+∞

lim
m→+∞F(l, t)

∥∥∥F (t+ ·+ (b1km , · · ·, bnkm);x)−
[
F ∗(t;x)

]
(·)
∥∥∥
l
= 0 (2.3)

and

lim
l→+∞

lim
m→+∞F(l, t)

∥∥∥[F ∗(t− (b1km , · · ·, bnkm);x)
]
(·)− F (t+ ·;x)

∥∥∥
l
= 0, (2.4)

pointwise for all x ∈ B and t ∈ Rn [t ∈ Zn], or

© 2025 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 11



(iii)

lim
(l,m)→+∞

F(l, t)
∥∥∥F (t+ ·+ (b1km, · · ·, bnkm);x)−

[
F ∗(t;x)

]
(·)
∥∥∥
l
= 0

and

lim
(l,m)→+∞

F(l, t)
∥∥∥[F ∗(t− (b1km , · · ·, bnkm);x)

]
(·)− F (t+ ·;x)

∥∥∥
l
= 0,

pointwise for all x ∈ B and t ∈ Rn [t ∈ Zn].

In the case that (i), resp. [(ii); (iii)], holds, then we say that F (·; ·) is Weyl-(F,P ,R,B)-multi-almost
automorphic, resp. [Weyl-(F,P ,R,B)-multi-almost automorphic of type 1; jointly Weyl-(F,P ,R,B)-
multi-almost automorphic].

Definition 2.2. Suppose that ∅ �= W ⊆ Rn [∅ �= W ⊆ Zn], F : (0,∞) × Rn → (0,∞) [F : (0,∞) ×
Zn → (0,∞)] and F : Rn×X → Y [F : Zn×X → Y ] satisfies that for each x ∈ X, l > 0 and t ∈ Rn

[t ∈ Zn] we have F (t + ·;x) ∈ Pl. If for every B ∈ B and (bk = (b1k, b
2
k, · · ·, bnk)) ∈ R there exists a

subsequence (bkm = (b1km , b
2
km
, · · ·, bnkm)) of (bk) such that for each ε > 0, x ∈ B and t ∈ Rn [t ∈ Zn]

there exists m0 ∈ N such that, for every m, m′ ∈ N with m ≥ m0 and m′ ≥ m0, there exists l0 > 0

such that, for every l ≥ l0 and w ∈ lW, we have∥∥∥F(t+ ·+ (b1km , · · ·, bnkm)− w;x
)− F

(
t+ ·+ (b1km′ , · · ·, bnkm′ )− w;x

)∥∥∥
l
< ε/F(l, t− w),

then we say that F (·; ·) is Weyl-(F,P ,R,B,W )-multi-almost automorphic of type 2.

Definition 2.3. Suppose that ∅ �= W ⊆ R
n [∅ �= W ⊆ Z

n], F : (0,∞) × R
n → (0,∞) [F : (0,∞) ×

Zn → (0,∞)] and F : Rn × X → Y [F : Zn × X → Y ] satisfies that for each x ∈ X, l > 0 and
t ∈ Rn [t ∈ Zn] we have F (t + ·;x) ∈ Pl. Let for every l > 0, B ∈ B and (bk = (b1k, b

2
k, · · ·, bnk)) ∈ R

there exist a subsequence (bkm = (b1km , b
2
km
, · · ·, bnkm)) of (bk) and a function F ∗ : Rn × X → Pl

[F ∗ : Zn ×X → Pl] such that for each ε > 0, x ∈ B and t ∈ Rn [t ∈ Zn], there exists p > 0 such that,
for every l ∈ [p,+∞), m ∈ N with m ≥ p and w ∈ lW, we have

F(l, t − w)
∥∥∥F (t+ ·+ (b1km, · · ·, bnkm)− w;x)− [F ∗(t− w;x)

]
(·)
∥∥∥
l
< ε

and

F(l, t − w)
∥∥∥[F ∗(t− (b1km , · · ·, bnkm)− w;x)

]
(·)− F (t + · − w;x)

∥∥∥
l
< ε,

then we say that F (·; ·) is jointly Weyl-(F,P ,R,B,W )-multi-almost automorphic.

In the recent research paper [32], we have considered the Besicovitch multi-dimensional almost au-
tomorphic type functions and their applications. This is the first paper in the existing literature dealing
with the notion of generalized almost automorphy which additionally involves the growth order of limit
function F ∗(·; ·); cf. [32, Definition 3.1]. We will consider henceforth the notion in which the limit
function F ∗(·; ·) from Definition 2.1, resp. Definition 2.3, is bounded by the function ω : Rn → (0,∞)

[ω : Zn → (0,∞)] in the sense that there exists M > 0 such that, for every x ∈ B, l > 0 and
u ∈ lΩ, we have ‖[F ∗(t;x)](u)‖Y ≤ Mω(|t|), t ∈ Rn [‖[F ∗(t;x)](u)‖Y ≤ Mω(|t|), t ∈ Zn]. If
this is the case, then we say that the function F (·; ·) is Weyl-(F,P ,R,B, ω)-multi-almost automorphic
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[Weyl-(F,P ,R,B, ω)-multi-almost automorphic of type 1; jointly Weyl-(F,P ,R,B, ω)-multi-almost au-
tomorphic], resp., jointly Weyl (F,P ,R,B,W, ω)-multi-almost automorphic; furthermore, if ω(·) ≡ 1,

then we write “b” in place of “ω”.

If 1 ≤ p < ∞, then the notion of a (jointly) Weyl-p-almost automorphic function (of type 1) [(jointly)
Weyl-(p, b)-multi-almost automorphic (of type 1)] F : Rn → Y is obtained with Ω = [−1, 1]n, R being
the collection of all sequnces in Rn, F(l, t) ≡ l−n/p and Pl = Lp([−l, l]n : Y ); the notion of a (jointly)
Weyl-p-almost automorphic sequence (of type 1) [(jointly) Weyl-(p, b)-multi-almost automorphic (of
type 1)] F : Zn → Y is new and can be obtained with Ω = [−1, 1]n, R being the collection of all
sequences in Zn, F(l, t) ≡ l−n/p and Pl = Lp([−l, l]n ∩ Zn : Y ) [cf. the first term in the equation (2.6)
below with pl ≡ p and νl ≡ 1]. We similarly define the notion of (joint) Weyl-(p,R)-almost automorphy
(of type 1) [(joint) Weyl-(p,R, b)-almost automorphy (of type 1)], where R is a general collection of
sequences obeying our requirements.

We continue by introducing the corresponding notion in which 0 < p < 1 (cf. also [30, Subsection
4.3.1] for the notion of metrical Weyl distance; if 1 ≤ p <∞, then we have F(l, t) ≡ l−n/p):

Definition 2.4. Suppose that 0 < p < 1 and F : Rn → Y [F : Zn → Y ]. Then we say that F (·)
is (jointly) Weyl-p-almost automorphic function (of type 1) [(jointly) Weyl-(p, b)-almost automorphic
sequence (of type 1)] if and only if F (·) is (jointly) Weyl-(F,P ,R)-multi-almost automorphic (of type
1) [(jointly) Weyl-(F,P ,R, b)-multi-almost automorphic (of type 1)], where Ω = [−1, 1]n, R is the
collection of all sequences in Rn [Zn], F(l, t) ≡ l−n and Pl = Lp([−l, l]n : Y ) [Pl = lp([−l, l]n∩Zn : Y );

cf. the second term in the equation (2.6) below with νl ≡ 1]. If R is a general collection of sequences
obeying our requirements, then we also say that F (·) is (jointly) Weyl-(p,R)-almost automorphic (of
type 1) [(jointly) Weyl-(p,R, b)-almost automorphic (of type 1)].

We can further generalize the notion introduced in the above three definitions following our approach
from [29, Definition 8.1.2]; cf. also [29, Remark 8.3.19(i)] and [32, Example 2.7]. The notion in which
Pl = Lp([−l, l]n : Y ) [Pl = lp([−l, l]n ∩ Zn : Y )] and F(l, t) ≡ l−n/p, if 1 ≤ p < +∞, resp.,
F(l, t) ≡ l−n, if 0 < p < 1, is extremely important; if this is the case, then we have the following result
which can be simply formulated for the general function spaces introduced in Definition 2.1-Definition
2.3, as well:

Proposition 2.5. Let Pl and F(l, ·) be as above (l > 0). Then the following holds:

(i) Suppose that 0 < p ≤ q < +∞. Then any (jointly) Weyl-q-almost automorphic function F : Rn →
Y [F : Zn → Y ] (of type 1) is (jointly) Weyl-p-almost automorphic (of type 1); furthermore, the
same holds for the corresponding classes of (jointly) Weyl-(q, b)-almost automorphic functions (of
type 1) and (jointly) Weyl-(p, b)-almost automorphic functions (of type 1).

(ii) Suppose that 0 < p ≤ q < +∞. Then F : Rn → Y [F : Zn → Y ] is essentially bounded, (jointly)
Weyl-(q, b)-almost automorphic (of type 1) if and only if F (·) is essentially bounded, (jointly) Weyl-
(p, b)-almost automorphic (of type 1).

Proof. The proof of (i) is very simple and follows from an elementary application of the Hölder in-
equality. Keeping this in mind, the statement (ii) follows immediately if we prove that any essentially
bounded, (jointly) Weyl-(p, b)-almost automorphic function F : Rn → Y [F : Zn → Y ] (of type
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1) is (jointly) Weyl-(q, b)-almost automorphic (of type 1). For the sake of brevity, we will consider
here the essentially bounded, jointly Weyl-(p, b)-almost automorphic functions F : Rn → Y, only. Let
(bk) be a given sequence. Then, for every l > 0, there exist a subsequence (bkm) of (bk), a function
F ∗ : Rn → Lp([−l, l]n : Y ) and a finite real number M > 0 such that ‖[F ∗(t)

]
(x)‖Y ≤ M for all

t ∈ R
n and x ∈ [−l, l]n as well as that, for every t ∈ R

n and ε > 0, there exists s > 0 such that, for
every l ≥ s and for every m ∈ N with m ≥ s, we have

l−n

∫
[−l,l]n

∥∥∥F(t + x+ bbm
)− [F ∗(t)

]
(x)
∥∥∥p
Y
dx < ε

and

l−n

∫
[−l,l]n

∥∥∥[F ∗(t− bbm)
]
(x)− F

(
t + x

)∥∥∥p
Y
dx < ε. (2.5)

Then the final conclusion simply follows from the estimate

l−n

∫
[−l,l]n

(∥∥∥F(t+ x+ bbm
)− [F ∗(t)

]
(x)
∥∥∥
Y
/
(‖F‖∞ +M

))q

dx

≤ l−n

∫
[−l,l]n

(∥∥∥F(t+ x+ bbm
)− [F ∗(t)

]
(x)
∥∥∥
Y
/
(‖F‖∞ +M

))p

dx

and the corresponding estimate for the term appearing in (2.5).

We continue by providing some useful observations:

Remark 2.6. (i) We omit the term “B” from the notation for the functions [sequences] of the form
F : Rn → Y [F : Zn → Y ]; furthermore, we omit the term “R” if R denotes the collection of all
sequences in Rn [Zn], and we omit the term “-multi” if n = 1.

(ii) If we consider the continuous notion from the above three definitions, then the very natural ex-
tension of the notion introduced in [29, Definition 8.3.17, Definition 8.3.18, Definition 8.3.28]
can be obtained by setting ‖f‖l ≡ ‖f‖

L
pl(t)
νl

(lΩ:Y )
, where pl ∈ P(lΩ) [pl ≡ p ∈ (0, 1) for all

l > 0] and νl : lΩ → (0,∞) is a Lebesgue measurable function, or ‖f‖l ≡ ‖f‖Cb,νl
(lΩ:Y ), where

νl : lΩ → [0,∞) is any non-zero function (l > 0). Concerning the discrete notion from the
above-mentioned definitions, the natural choices for ‖f‖l can be obtained by setting

‖f‖l ≡
[ ∑
j∈lΩ∩Zn

∥∥νl(j)f(j)∥∥pl
]1/pl [

‖f‖l ≡
∑

j∈lΩ∩Zn

∥∥νl(j)f(j)∥∥p
]
, (2.6)

or ‖f‖l ≡ sup
j∈lΩ∩Z

∥∥νl(j)f(j)∥∥,
where 1 ≤ pl < +∞ [pl ≡ p ∈ (0, 1) for all l > 0] and νl : lΩ ∩ Zn → [0,∞) is any non-zero
function (l > 0).

(iii) The notions introduced in the above definitions provide a very general approach to Weyl-p-almost
automorphy. For example, if we assume that for each l > 0 we have Pl = L∞(lΩ : Y ) or
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Pl = Lp
ν(lΩ : Y ) with ν ∈ Lp(Rn : (0,∞)) and p > 0 as well as that for each x ∈ X the function

F (·;x) is bounded and for each t ∈ Rn we have liml→+∞ F(l, t) = 0, then the function F (·; ·) is
(jointly) Weyl-(F,P ,R,B)-multi-almost automorphic [Weyl-(F,P ,R,B)-multi-almost automor-
phic of type 1, provided that the limits limm→+∞ · in the equations (2.3)-(2.4) exist], which can be
shown by plugging F ∗ ≡ F.

In [33], we have observed that any Stepanov-p-almost automorphic function f : R → Y is Weyl-p-
almost automorphic of type 1. This result can be simply extended as follows. Suppose that the require-
ments clarified directly before Definition 1.1 hold with Ω = [−1, 1]n and G : (0,∞) → (0,∞). Let for
each l > 0 the non-empty set Zl ⊆ Y lΩ be defined as the set of all functions f : [−l, l]n → Y such that,
for every cube of the form k + [−1, 1]n which belongs to [−l, l]n, where k ∈ (2Z + 1)n, we have that
the restriction of function f(· − k) to the set [−1, 1]n belongs to P ; suppose, further, that the set Zl is
equipped with any pseudometric dl(·; ·) such that

dl(f, g) ≤ G(l)
∑
k

d
(
f(· − k)|[−1,1]n, g(· − k)|[−1,1]n

)
, f, g ∈ Zl, l > 0,

where the summation is taken over all points k ∈ (2Z + 1)n such that k + [−1, 1]n ⊆ [−l, l]n. If for
each l > 0 there exists a finite cl > 0 such that F(l, t)G(l) ≤ cl for all t ∈ Rn, then the second limits
in (2.3)-(2.4) are equal to zero for every fixed l > 0, and therefore, we can clarify our second structural
result:

Proposition 2.7. Suppose that F : Rn × X → Y is Stepanov ([−1, 1]n,R,B, ZP)-multi-almost auto-
morphic and for each l > 0 there exists a finite cl > 0 such that F(l, t)G(l) ≤ cl for all t ∈ R

n. Then
F (·; ·) is Weyl-(F,P ,R,B)-multi-almost automorphic of type 1, with P being defined as above.

The class of Stepanov-p-almost periodic functions with a general exponent p > 0 has been system-
atically analyzed in the joint paper of the second named author and W.-S. Du [37]. With the help of
the metrical Bochner criterion [23, Theorem 3.3], we can simply prove that any Stepanov-p-almost pe-
riodic function F : Rn → Y, where p > 0, is Weyl-p-almost automorphic, Weyl-p-almost automor-
phic of type 1, as well as jointly Weyl-p-almost automorphic in the usual sense, with the limit function
F ∗ ≡ F ; the converse statement is not true since there exists a jointly Weyl-p-almost automorphic
function f ∈ Lp

loc(R : R) which is not Stepanov-p-almost automorphic ([33]). Furthermore, the joint
Weyl-p-almost automorphy of F : Rn×X → Y [F : Zn×X → Y ] implies its Weyl-p-almost automor-
phy provided that for each k ∈ N the both limits in the equations (2.1)-(2.2) exist as l → +∞; a similar
comment can be given for the Weyl-p-almost automorphy of type 1.

We continue by providing some illustrative examples:

Example 2.8. (i) In [29, Theorem 8.3.8], we have considered the function f(x) := |x|σ, x ∈ R,where
σ ∈ (0, 1), p ∈ [1,∞) and (1 − σ)p < 1. Among many other conclusions, we have deduced there
that the function f(·) is Weyl-p-almost automorphic, not Weyl-p-almost automorphic of type 1 nor
joint Weyl-p-almost automorphic.

Let us consider now case in which σ > 0, p ∈ (0, 1) and a > 1 − (1 − σ)p > 0. Concerning
the Weyl-p-almost automorphy of f(·), we would like to observe here that the same argumentation
as in the proof of the above-mentioned theorem shows that f(·) is Weyl-(F,P ,R)-multi-almost
automorphic, where F(l, t) ≡ l−a, Pl ≡ Lp([−l, l] : Y ) and R is the collection of all real sequences.
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Furthermore, if σ ≥ 1, ν ∈ L∞[−l, l] for all l > 0 and liml→+∞ lσ−1F(l) = 0, then the function
f(·) is Weyl-(F,P ,R)-multi-almost automorphic, where F(l, t) ≡ F(l), Pl ≡ Cb,ν([−l, l] : Y ) for
all l > 0 and R is the collection of all real sequences; in order to see this, we can apply the Lagrange
mean value theorem and the following simple computation (w ∈ R and l > 0 are arbitrary, f ∗ ≡ f ):

F(l) sup
x∈[−l,l]

|f(t+ w + x)− f(t+ x)| · ν(x)

= F(l) sup
x∈[−l,l]

∣∣∣∣∣t+ w + x
∣∣σ − ∣∣t+ x

∣∣σ∣∣∣ · ν(x)
≤ σ|w|F(l) sup

x∈[−l,l]

sup
y∈[|t+x|,|t+x+ω|]∪[|t+x+ω|,|t+x|]

yσ−1 · ν(x)

≤ σ|w|F(l) sup
x∈[−l,l]

[∣∣t+ x
∣∣σ−1

+
∣∣t+ x+ w

∣∣σ−1
]
· ν(x)

≤ σ|w|F(l) sup
x∈[−l,l]

[
2
∣∣t∣∣σ−1

+
∣∣w∣∣σ−1

+ 2
∣∣x∣∣σ−1

]
· ν(x).

(ii) Let p > 0. Arguing as in the proof of [29, Theorem 8.3.10], we have that the Heaviside function
χ[0,∞)(·) is not jointly Weyl-p-almost automorphic as well as that χ[0,∞)(·) is both Weyl-p-almost
automorphic and Weyl-p-almost automorphic of type 1; furthermore, we can similarly prove the
following:

(a) The Heaviside function χ[0,∞)(·) is not jointly Weyl-(F,P)-almost automorphic if F(l) ≡ 1/l

and Pl ≡ Lp
ν([−l, l] : C) for all l > 0, where ν : R → (0,∞) is any Lebesgue measurable

function such that lim supl→+∞(1/l)
∫ 0

−l ν
p(x) dx > 0.

(b) The Heaviside function χ[0,∞)(·) is Weyl-(F,P)-almost automorphic if liml→+∞ F(l) = 0 and
Pl ≡ Lp

ν([−l, l] : C) for all l > 0, where ν : R → (0,∞) is any p-locally integrable function.

We can similarly consider the multi-dimensional analogue of this example and provide the basic
information about the metrical Weyl-p-almost automorphic properties of the function χK(·), where
K is a non-empty compact subset of Rn; cf. [29, Example 8.3.21] for more details in this direction.

(iii) In [29, Example 8.3.20], we have reconsidered the well-known example proposed by J. Stryja
[41, pp. 42–47]; see also [10, Example 4.28]: Define f : R → R by f(x) := 0 for x ≤ 0,

f(x) :=
√
n/2 if x ∈ (n − 2, n − 1] for some n ∈ 2N and f(x) := −√n/2 if x ∈ (n − 1, n] for

some n ∈ 2N. We have shown that the function f(·) is not (jointly) Weyl 1-almost automorphic
(of type 1; of type 2). On the other hand, we have |f(x)| ≤ 2−1/2

√|x|, x ∈ R so that a simple
computation shows that the function f(·) is (F,P)-almost automorphic, provided that for each
l > 0 we have Pl = Lp

ν([−l, l]) with some p > 0 and a Lebesgue measurable function ν(·) such
that

lim
l→+∞

F(l)

l∫
−l

(
1 + |x|p/2

)
νp(x) dx = 0.

Furthermore, we can simply prove that the function f(·) is (F,P ,R)-almost automorphic, provided
that R is the collection of all real sequences (am) satisfying that am ∈ 2N for all m ∈ N as well as
that for each l > 0 we have Pl = Lp

ν([−l, l]) with some p > 0 and a Lebesgue measurable function
ν(·) such that liml→+∞ F(l)

∫ l

−l
νp(x) dx = 0.
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(iv) In [32, Example 2.3] (cf. also [30, Example 3.4.4]), we have analyzed the Weyl-p-almost auto-
morphic properties of the function f : R → l∞, given by f(t) := (e−|t|/k)k∈N, t ∈ R. Since this
function is slowly oscillating, it can be simply shown that the function f(·) is Weyl-(F,P)-almost
automorphic provided that liml→+∞ F(l) = 0, there exist l0 > 0 and M > 0 such that, for every
l ≥ l0, we have F(l)

∫ l

−l ν
p(x) dx ≤M and Pl = Lp

ν([−l, l]) for some p > 0 (l > 0) and a p-locally
integrable function ν : R → (0,∞). Moreover, we can simply prove that the function f(·) is
Weyl-(F,P)-almost automorphic of type 1 provided that ν : R → (0,∞) is a p-locally integrable
function and Pl = Lp

ν([−l, l]) for some p > 0 (l > 0). In connection with this example, we would
like to stress the following:

(a) Clearly, ‖f(t)‖ = 1 for all t ∈ R so that limt→+∞ t−1
∫ t

0
‖f(s)‖ ds = 1 �= 0, as it has been

mistakenly written.

(b) Concerning the Weyl-p-almost automorphy of the function f(·), we should use the limit func-
tion f ∗ ≡ f , if (bk) is a sequence tending to plus infinity or minus infinity (not f ∗ ≡ 0).

(c) The corresponding statement for the joint Weyl-p-almost automorphy of the function f(·) is
not true.

We continue by providing the following useful observations:

Remark 2.9. (i) The result of [29, Proposition 8.3.9] remains true in the higher-dimensional setting
so that any Weyl-p-almost automorphic function of type 1 (jointly Weyl-p-almost automorphic
function) F : Rn → Y must be Stepanov-p-bounded, i.e., supt∈Rn

∫
t+[0,1]n ‖F (t)‖p dt < +∞

(p > 0; cf. also Proposition 2.5(i)). Furthermore, in the discrete setting, a similar argumentation
shows that any Weyl-p-almost automorphic sequence of type 1 (jointly Weyl-p-almost automorphic
sequence) F : Zn → Y, where p > 0, must be bounded.

(ii) The statement of [29, Proposition 8.3.13] can be also formulated in the higher-dimensional setting,
with the usage of spaces Lp

ν(l[−1, 1]n : Y ), where p > 0 and ν : Rn → (0,∞) is any Lebesgue
measurable function. Details can be left to the interested readers (cf. also [29, Question 8.3.14,
Question 8.3.15]).

Concerning [29, Example 8.3.16], we would like to recall that A. Haraux and P. Souplet have consid-
ered, in [27, Theorem 1.1], the function f : R → R given by

f(t) :=
∞∑

m=1

1

m
sin2

( t

2m

)
, t ∈ R.

We already know that this function is (Besicovitch) unbounded and Weyl p-almost automorphic for any
finite exponent p ≥ 1 as well as that for each τ ∈ R the function f(·+ τ)− f(·) is almost anti-periodic
(see [28] for the notion). Due to Proposition 2.5(i), this clearly implies that the function f(·) is Weyl-
p-almost automorphic for any finite exponent p > 0. Here we would like to note that the function f(·)
has bounded differences, i.e., for each τ ∈ R we have that the function f(· + τ) − f(·) is bounded.
Every such a Lebesgue measurable function has to be Weyl-(F,P)-almost automorphic, where p > 0

and Pl = Lp
ν([−l, l]) for some p-locally integrable function ν(·) satisfying that

lim
l→+∞

F(l, t)

l∫
−l

νp(x) dx = 0, t ∈ R;
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cf. also [29, p. 63] for more details about functions with bounded differences.

Before proceeding to the next section, we would like to observe that the statements of [29, Proposition
8.3.23, Proposition 8.3.24] can be simply formulated for the function spaces introduced in this paper.
The interested reader may also try to extend the statement of [29, Proposition 8.3.30] concerning the
pointwise products of metrically Weyl almost automorphic type functions.

3 Extensions of metrically Weyl almost automorphic sequences

This section aims to provide the basic information about the extensions of metrically Weyl almost
automorphic sequences. At the very beginning, we would like to emphasize that the statements of [38,
Theorem 2.3, Theorem 2.5] cannot be so simply formulated for the general classes of metrically Weyl
almost automorphic sequences and functions. Discretization of Weyl almost automorphic type functions
is a completely new topic and here we will first present some positive results in this direction, which
can be approved similarly as in [33] (we will also consider non-continuous functions; for more details
about discretization of generalized almost periodic type functions and generalized almost automorphic
type functions, we refer the reader to [11, 16, 20, 38]):

Example 3.1. Suppose that p ≥ 1.

(i) If K is any non-empty compact subset of Rn, then the function χK(·) is (jointly) Weyl-p-almost
automorphic (of type 1). The same holds for the sequence (χK(t))t∈Zn.

(ii) We already know that the function χ[0,∞)n(·) is not jointly Weyl-p-almost automorphic, not Weyl-p-
almost automorphic of type 1 as well as that the function χ[0,∞)n(·) is Weyl-p-almost automorphic.
The same holds for the sequence (χ[0,∞)n(t))t∈Zn.

(iii) All conclusions established for the function x �→ f(x) ≡ |x|σ, x ∈ R, where σ ∈ (0, 1) and
(1− σ)p < 1, remain true for the sequence (f(k))k∈Z; cf. [29, Theorem 8.3.8] for more details.

Concerning some negative results in this direction, we will only observe that J. Andres and D. Pen-
nequin have constructed, in [11, Example 4], an infinitely differentiable Stepanov-1-almost periodic
function f : R → R such that the sequence (f(k))k∈Z is not bounded. Therefore, the function f(·) is
(jointly) Weyl-1-almost automorphic (of type 1), but the sequence (f(k))k∈Z is not bounded and therefore
not (jointly) Weyl-1-almost automorphic (of type 1); see also Remark 2.9(i) and [36, Remark 4].

In connection with [38, Theorem 2.5], we will state and prove the following result (cf. Definition 2.4
for the notion):

Theorem 3.2. Suppose that p > 0 and F : Zn → Y is bounded, jointly Weyl-(p,R)-multi-almost
automorphic sequence, where R is any collection of sequences in Zn such that the assumption (bk) ∈ R

implies that any subsequence of (bk) also belongs to R. Let R′ be the collection of all sequences (ak) in
Rn satisfying that there exists a sequence (bk) ∈ R such that supk∈N |ak − bk| < +∞. Then there exists
a bounded, uniformly continuous, jointly Weyl-(p,R′)-multi-almost automorphic function F̃ : Rn → Y

such that R(F̃ (·)) ⊆ CH(R(F )), ‖F̃‖∞ = ‖F‖∞ and F̃ (k) = F (k) for all k ∈ Zn.
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Proof. We will consider the one-dimensional setting for the sake of brevity (in general case, the result
follows from a similar argumentation but the proof is much more technically complicated). If t ∈ [k, k+

1) for some k ∈ Z, then we define F̃ (t) := F (k) + (t− k) · [F (k + 1)− F (k)]. Since F (·) is bounded,
it readily follows that F̃ (·) is bounded, uniformly continuous as well as that R(F̃ (·)) ⊆ CH(R(F )),

‖F̃‖∞ = ‖F‖∞ and F̃ (k) = F (k) for all k ∈ Z. It remains to be proved that F̃ (·) is jointly Weyl-
(p,R′)-almost automorphic. Let (ak) ∈ R′ be fixed. Then there exists a sequence (bk) ∈ R such that
supk∈N |ak − bk| < +∞. Due to our assumptions, for every l > 0, we can find a subsequence (bkm) ∈ R

of (bk) and a function F ∗ : Z → Lp([−l, l] ∩ Z) such that, for every t ∈ Z, we have:

lim
(m,l)→+∞

l−1
∑

j∈[−l,l]∩Z

∥∥∥F(t+ bkm + j
)− [F ∗(t)

]
(j)
∥∥∥p
Y
= 0 (3.1)

and

lim
(m,l)→+∞

l−1
∑

j∈[−l,l]∩Z

∥∥∥[F ∗(t− bkm
)]
(j)− F

(
t+ j

)∥∥∥p
Y
= 0. (3.2)

Since F (·) is bounded, it simply follows that for each ε > 0 there exist real numbers cp > 0 and l0 > 0

such that∑
j∈[−l,l]∩Z

∥∥∥[F ∗(0)
]
(j)
∥∥∥p
Y
≤ cp

(
(2l + 2)‖F‖p∞ + εl

)
, l ≥ l0.

Keeping this in mind, it is not difficult to prove that (3.1)-(3.2) imply

lim
(m,l)→+∞

l−1
∑

j∈[−l,l]∩Z

∥∥∥F(t+ bkm + j
)− [F ∗(0)

]
(t+ j)

∥∥∥p
Y
= 0 (3.3)

and

lim
(m,l)→+∞

l−1
∑

j∈[−l,l]∩Z

∥∥∥[F ∗(0)](t− bkm + j)− F
(
t+ j

)∥∥∥p
Y
= 0. (3.4)

Furthermore, we may assume without loss of generality that limk→∞(ak − bk) = c ∈ R. In order to
complete the proof, it suffices to prove that, for every fixed number t ∈ R, we have:

lim
(m,l)→+∞

l−1

l∫
−l

∥∥∥F̃(t+ akm + x
)−G(t + x+ c)

∥∥∥p
Y
dx = 0 (3.5)

and

lim
(m,l)→+∞

l−1

l∫
−l

∥∥∥G(t− akm + x+ c
)− F

(
t+ x

)∥∥∥p
Y
dx = 0, (3.6)

where G(t) := [F ∗(0)](k) + (t − k) · {[F ∗(0)](k + 1)− [F ∗(0)](k)} if t ∈ [k, k + 1) for some k ∈ Z.

We will only prove the limit equation (3.5) since the limit equation (3.6) can be proved analogously, with
the help of the limit equation (3.4). Let ε > 0 be fixed. Since F̃ (·) is uniformly continuous, (3.5) follows
automatically if we prove that there exists a sufficiently large real number s > 0 such that, for every
l ≥ s and m ≥ s, we have:

l−1

l∫
−l

∥∥∥F̃(t+ x+ c+ bkm
)−G(t + x+ c)

∥∥∥p
Y
dx ≤ ε. (3.7)
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To deduce the validity of (3.7), we divide the segment [−l, l] into disjoint intervals depending on the
belonging of the number t+ c+x to some interval of the form [k, k+1), where k ∈ Z. Keeping in mind
the definitions of F̃ (·), G(·) and such a division of the interval [−l, l], we easily get that there exists a
finite real number cp > 0 such that

l∫
−l

∥∥∥F̃(t+ x+ c+ bkm
)−G(t+ x+ c)

∥∥∥p
Y
dx ≤ cp

	l
+1∑
j=−	l
−1

∥∥∥F(�t�+ j + bkm
)−G(�t�+ j)

∥∥∥p
Y
,

for all sufficiently large numbers l > 0 and m ∈ N, which simply implies the required.

We can similarly prove the following result for jointly Weyl-(F,P ,R,W )-multi-almost automorphic
sequences of type 2:

Theorem 3.3. Suppose that p > 0 and F : Zn → Y is a bounded, jointly Weyl-(F,P ,R,W )-multi-
almost automorphic sequence of type 2, where F(l, t) ≡ l−n/p if p ≥ 1 [F(l, t) ≡ l−1 if p ∈ (0, 1)],
∅ �= W ⊆ Zn, for each l > 0 and f ∈ Pl we have ‖f‖l ≡ [

∑
j∈[−l,l]n∩Zn ‖f(j)‖pY ]1/p if p ≥ 1

[‖f‖l ≡ ∑
j∈[−l,l]n∩Zn ‖f(j)‖pY if p ∈ (0, 1)], R is any collection of sequences in Zn such that the

assumption (bk) ∈ R implies that any subsequence of (bk) also belongs to R. Let R′ be the collection of
all sequences (ak) in Rn satisfying that there exists a sequence (bk) ∈ R such that supk∈N |ak − bk| <
+∞. Then there exists a bounded, uniformly continuous, Weyl-(F,P ′,R′,W )-multi-almost automorphic
function F̃ : Rn → Y of type 2, where for each l > 0 we have P ′

l = Lp([−l, l]n : Y ); furthermore, we
have R(F̃ (·)) ⊆ CH(R(F )), ‖F̃‖∞ = ‖F‖∞ and F̃ (k) = F (k) for all k ∈ Zn.

It is worthwhile to mention that Theorem 3.3 can be simply formulated for the class of jointly Weyl-
(F,P ,R,W )-multi-almost automorphic sequences, as well. We close this section with the observation
that we have recently introduced and analyzed, in [37, Section 4], various classes of Stepanov-p-almost
periodic functions in norm and Stepanov-p-almost automorphic functions in norm (p > 0). We will not
consider here the corresponding classes of (metrically) Weyl-p-almost automorphic functions in norm
(p > 0).

4 Applications to the abstract fractional integro-differential equations and the abstract frac-
tional difference equations

In this section, we will provide several applications of the established results in the qualitative analysis
of solutions for various classes of the abstract fractional integro-differential equations and the abstract
fractional difference equations.

1. Convolution invariance of joint Weyl-(F,P ,R,B, ω)-multi-almost automorphy and Weyl-
(F,P ,R,B,W )-multi-almost automorphy of type 2. The introduced classes of metrically Weyl al-
most automorphic type functions, especially the class of Weyl-(F,P ,R,B)-multi-almost automorphic
functions (of type 1), behave very badly with the respect to the invariance under the actions of infinite
convolution products. The main problem is the existence of the second limits in the equations (2.1)-
(2.2), resp. (2.3)-(2.4). Concerning this question, we will only emphasize that the corresponding classes
of metrically Besicovitch almost automorphic functions and sequences, which will be considered in our
forthcoming paper [34], behave much better with the respect to this matter as well as that the certain
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results can be obtained provided that the second limits in these equations are equal to zero or that the
limit function F ∗(·; ·) satisfies F ∗ ≡ F.

Concerning [29, Proposition 8.3.6, Question 8.3.7], we would like to present the following result which
can be deduced by means of the argumentation contained in the proof of [32, Proposition 3.2] (observe
only that the function F (·) appearing on [32, l. -2, p. 47] is bounded in the newly arisen situation;
taking into account the corresponding definition of joint Weyl-(F,P ,R,B, ω)-multi-almost automorphy,
the remainder of proof can be simply copied):

Proposition 4.1. Suppose that the operator family (R(t))t>0 ⊆ L(X,Y ) satisfies that there exist finite
real constants M > 0, β ∈ (0, 1] and γ > β such that∥∥R(t)∥∥

L(X,Y )
≤M

tβ−1

1 + tγ
, t > 0.

Suppose, further, that a > 0, α > 0, 1 ≤ p < +∞, αp ≥ 1, ap ≥ 1, αp(β − 1)/(αp − 1) > −1 if
αp > 1, and β = 1 if αp = 1. If b ∈ [0, γ − β), w(t) := (1 + |t|)b, t ∈ R and the function f : R → X is
both essentially bounded and jointly Weyl-(F,P ,R, ω)-multi-almost automorphic with F(l) ≡ l−a/α and
Pl = Lαp([−l, l]) for all l > 0, then the function F (·), given by

t �→ F (t) :=

t∫
−∞

R(t− s)f(s) ds, t ∈ R, (4.1)

is continuous, bounded and jointly Weyl-(F,P ,R, ω)-multi-almost automorphic.

It is clear that Proposition 4.1 can be applied in the analysis of the existence and uniqueness of jointly
Weyl-(F,P ,R, ω)-multi-almost automorphic type solutions for a large class of the abstract fractional
integro-differential inclusions without initial conditions. For example, we can apply this result in the
study of the fractional Poisson heat equationDγ

t,+[m(x)v(t, x)] = (Δ−b)v(t, x)+f(t, x), t ∈ R, x ∈ Ω;

v(t, x) = 0, v(t, x) ∈ [0,∞) × ∂Ω in the space X := Lp(Ω), where Ω is a bounded domain in Rn and
some extra assumptions are satisfied. See [28] for more details about applications of this type.

The proof of following result is very similar to the proof of [29, Theorem 8.3.25] and therefore omitted:

Theorem 4.2. Suppose that h ∈ L1(Rn), p ∈ P(Rn) and F : Rn ×X → Y is Weyl-(F,P ,R,B, (2Z +

1)n)-multi-almost automorphic of type 2, where Pl = L
p(u)
ν (lΩ : Y ) for all l > 0 and some Lebesgue

measurable function ν : Rn → (0,+∞). Let p1, q ∈ P(Rn), let 1/p(u) + 1/q(u) ≡ 1, and let
F1 : (0,∞)× Rn → (0,∞). Suppose further that, for every x ∈ X, one has supt∈Rn ‖F (t;x)‖Y < ∞,

as well as that ∅ �= W2 ⊆ (2Z)n and for every t ∈ Rn there exists l1 > 0 such that, for every l ≥ l1 and
w ∈ lW2, we have∫

lΩ

ϕp1(u)

(
2F1(l, t + w)ν1(u)

∑
k∈l(2Z+1)n

∥∥h(u+ k − v)/ν(v)
∥∥
Lq(v)(lΩ)

F(l, t − k + w)

)
du ≤ 1.

Then the function h ∗ F : Rn ×X → Y, defined by

(h ∗ F )(t;x) :=
∫
Rn

h(σ)F (t− σ;x) dσ, t ∈ R
n, x ∈ X, (4.2)

is Weyl (F1,P1,R,B,W2)-multi-almost automorphic of type 2, where p1 ∈ P(Rn) and P 1
l = L

p1(u)
ν1 (lΩ :

Y ) for all l > 0 and some Lebesgue measurable function ν1 : Rn → (0,+∞).
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We can similarly consider the invariance of Weyl-(F,P ,R,B,W )-multi-almost automorphy of type 2

under the actions of the infinite convolution product (4.1) as well as the convolution invariance of and
joint Weyl-(F,P ,R,B,W )-multi-almost automorphy under the actions of convolution product (4.2) and
the convlution product (4.1); cf. also [29, Theorem 8.3.27, Theorem 8.3.29]. The possible applications
can be given to the heat equation in R

n and the evolution systems generated by the family of operators
(A(t) ≡ Δ + a(t)I)t≥0, where Δ denotes the Dirichlet Laplacian on Lr(Rn) for some r ≥ 1 and
a ∈ L∞([0,∞)); cf. also the second application and the third application given in [29, Subsection 8.3.5].

2. Some applications to the abstract fractional difference equations. The class of jointly equi-
Weyl-p-normal functions, where p ≥ 1, have been introduced in the final section of [33]. This class and
its metrical generalizations are important because they are stable, in a certain sense, under the actions of
convolution products. This enables to study the asymptotically Weyl almost automorphic type solutions
for a class of the abstract impulsive first-order differential inclusions (cf. [20, Subsection 4.1, Subsection
4.2] for more details in this direction).

For our next application, we need the following notion:

Definition 4.3. Suppose that F : R → (0,∞), ν : Z → (0,∞) and p ∈ [1,∞). Then we say that
a sequence f : Z → X is jointly equi-Weyl-(F, p, ν, pb)-almost automorphic if and only if there exist
positive real numbers M ≥ 1 and s ≥ 0 such that ‖f(k)‖ ≤ M(1 + |k|)s, k ∈ Z as well as that for any
integer sequence (sr) there exist a subsequence (srm) of (sr), a sequence f ∗ : Z → X and positive real
numbers M ′ ≥ 1 and s′ ≥ 0 such that ‖f ∗(k)‖ ≤M ′(1 + |k|)s′, k ∈ Z and

lim
(m,l)→+∞

sup
k∈R

F(l)

[
l∑

j=−l

∥∥f(j + k + srm
)− f ∗(k + j)

∥∥pνp(j)
]1/p

= 0.

In the following result, we analyze the existence and uniqueness of jointly equi-Weyl-(F, p, ν, pb)-
almost automorphic solutions of the first-order difference equation

u(k + 1) = Au(k) + f(k), k ∈ Z, (4.3)

where A ∈ L(X) and (fk ≡ f(k))k∈Z is a jointly equi-Weyl-(F, p, ν, pb)-almost automorphic sequence;
cf. also [12, Section 3] and [36, Theorem 7]:

Theorem 4.4. Suppose that ‖A‖ < 1, F : R → (0,∞), ν : Z → (0,∞), p ∈ [1,∞) and f : Z → X is
a jointly equi-Weyl-(F, p, ν, pb)-almost automorphic sequence. Then there exists a unique polynomially
bounded solution u(·) of (4.3) and u(·) is jointly equi-Weyl-(F, p, ν, pb)-almost automorphic, provided
that there exist a sequence ψ : Z → (0,∞) and a number σ > 0 such that ν(x + y) ≤ ν(x)ψ(y) for all
x, y ∈ Z and

∑+∞
v=0[ψ(v + 1)]p/(1 + vσ)p < +∞.

Proof. It is well known that a unique polynomially bounded solution u(·) of (4.3) is given by

u(k) =
+∞∑
v=0

Avf(k − v − 1), k ∈ Z;

observe that the above series converges since there exist positive real numbers M ≥ 1 and s ≥ 0 such
that ‖f(k)‖ ≤M(1 + |k|)s, k ∈ Z. Let ε > 0 be fixed. Then we know that for any integer sequence (sr)
there exist a subsequence (srm) of (sr), a sequence f ∗ : Z → X and positive real numbers M ′ ≥ 1 and
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s′ ≥ 0 such that ‖f ∗(k)‖ ≤ M ′(1 + |k|)s′, k ∈ Z as well as that there exists w > 0 such that, for every
k ∈ Z, l ≥ w and for every m ∈ N with m ≥ w, we have

F(l)

[
l∑

j=−l

∥∥f(j + k + srm
)− f ∗(k + j)

∥∥pνp(j)
]1/p

≤ ε.

Set u∗(k) :=
∑+∞

v=0A
vf ∗(k − v − 1), k ∈ Z; obviously, this series is convergent due to the polynomial

boundedness of the sequence f ∗(·). Observing that ν(j) ≤ ν(j−v−1)ψ(v+1) for all j ∈ Z, v ∈ N0 and∑+∞
v=0[ψ(v+ 1)]p/(1 + vσ)p < +∞, we can repeat verbatim the argumentation contained in the proof of

[36, Theorem 7] in order to see that there exists an absolute constant cpA > 0 such that, for every k ∈ Z,

l ≥ w and for every m ∈ N with m ≥ w, we have

F(l)

[
l∑

j=−l

∥∥u(j + k + srm
)− u∗(k + j)

∥∥pνp(j)
]1/p

≤ cpAε.

It is clear that Theorem 4.4 can be applied to any bounded linear operator of the form A = B/c, where
B ∈ L(X), c ∈ C and |c| > ‖B‖. Further on, the statements of [36, Theorem 8, Theorem 9] can be
formulated for jointly equi-Weyl-(F, p, ν, pb)-almost automorphic sequences, as well. In [36, Subsection
4.2], we have analyzed the abstract fractional difference equation

Δαu(k) = Au(k + 1) + f(k), k ∈ Z,

whereA is a closed linear operator onX, 0 < α < 1 and Δαu(k) denotes the Caputo fractional difference
operator of order α (cf. [9, Definition 2.3] for the notion). We would like to note that we can similarly
analyze the existence and uniqueness of jointly equi-Weyl-(F, p, ν, b)-almost automorphic solutions of
this equation (cf. Definition 4.3 with s = s′ = 0).

The existence and uniqueness of D-asymptotically jointly equi-Weyl-(F, p, ν, pb)-almost automorphic
type solutions for the difference equation

u(k + 1) = Au(k) + f(k), k ≥ 0; u(0) = u0

as well as the difference equation

u(k,m) = A(k,m)u(k − 1,m− 1) + f(k,m), k, m ∈ N,

subjected with the initial conditions

u(k, 0) = uk,0; u(0,m) = u0,m, k, m ∈ N0,

can be considered similarly as in [38, Subsection 3.1, Subsection 3.2]. Details can be left to the interested
readers.

5 Appendix: Vectorial Weyl almost automorphic type functions

Concerning the various notions of (metrical) Weyl almost automorphy considered in [2], [33] and this
paper, we would like to emphasize that we can also consider the following important classes of functions
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(here, the assumption p = 1 is almost inevitable; similarly we can introduce and analyze several new
classes of vectorial Stepanov almost periodic (automorphic) functions and vectorial Weyl almost periodic
functions):

Definition 5.1. Let f ∈ L1
loc(R : X). Then we say that f(·) is vectorially Weyl almost automorphic,

resp. vectorially Weyl almost automorphic of type 1, if and only if for every real sequence (sk), there
exist a subsequence (skm) and a function f ∗ ∈ L1

loc(R : X) such that

lim
m→∞ lim

l→+∞
1

2l

l∫
−l

[
f
(
t + skm + x

)− f ∗(t+ x)
]
dx = 0, (5.1)

resp.

lim
l→+∞

lim
m→∞

1

2l

l∫
−l

[
f
(
t + skm + x

)− f ∗(t+ x)
]
dx = 0, (5.2)

and

lim
m→∞ lim

l→+∞
1

2l

l∫
−l

[
f ∗
(
t− skm + x

)− f(t+ x)
]
dx = 0, (5.3)

resp.

lim
l→+∞

lim
m→∞

1

2l

l∫
−l

[
f ∗
(
t− skm + x

)− f(t+ x)
]
dx = 0, (5.4)

for each t ∈ R. We similarly introduce the class of jointly Weyl almost automorphic functions in the
vectorial sense.

It is worth noting that we use the vector-valued integration in the equations (5.1)-(5.4). This can be
essentially in some concrete situations, as the following well-known example indicates:

Example 5.2. Let X := c0, the Banach space of all complex sequences vanishing at plus infinity, en-
dowed with the sup-norm. Define f(t) := ((1/n) cos(t/n))n, t ∈ R. Then f : R → X is almost periodic
but its first anti-derivative F (t) := (sin(t/n))n, t ∈ R is bounded, uniformly continuous but not almost
automorphic since the range of F (·) is not relatively compact in c0 (see, e.g., [40, Example 2.7]). The
above implies that F (·) cannot be Stepanov-p-almost automorphic for any exponent p > 0; see [37] for
the notion and more details.

On the other hand, it is clear that F (·) is vectorially Weyl almost automorphic since for every fixed
integer km ∈ N we have that the second limits in (5.1) and (5.3) are equal to zero, with F ∗ ≡ F. In order
to see this, notice that we have (t, x ∈ R, skm ∈ R, km ∈ N):

F
(
t+ x+ skm

)− F (t+ x) = 2

(
sin

skm
2n

· cos 2t+ 2x+ 2skm
2n

)
n

,

which simply implies that, for every l > 0, we have:∥∥∥∥∥ 12l
l∫

−l

[
F
(
t+ x+ skm

)− F (t+ x)
]
dx

∥∥∥∥∥
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=

∥∥∥∥∥4l
(
n · sin skm

2n
· sin l

n
· cos 2t+ skm

2n

)
n

∥∥∥∥∥ ≤ 4

l

|skm |
2

;

the second limit equation in (5.3) can be considered similarly. Moreover, F (·) is not vectorially Weyl
almost automorphic of type 1, which can be shown as follows. If we suppose the contrary, then a simple
computation shows that for each sequence (sk) there exist a subsequence (skm) of (sk) and a mapping
F ∗ : R → c0 such that, for every t ∈ R, we have:

lim
l→+∞

lim
m→+∞ l−1

[(
n · sin t+ skm

n
· sin l

n

)
n

− 1

2

l∫
−l

F ∗(t+ x) dx

]
= 0.

This, in particular, implies that the second limit limm→+∞ · in the above expression always exists if l is
an irrational mutiple of π. After a simple calculation, we get that the sequence (sin((t+skm)/n))n exists
in c0 as m→ +∞, which implies by the proof of [17, Proposition 2.5] that the range of function F (·) is
relatively compact in c0. This is false and yields the contradiction.

For the continuation, let us observe that an application of Proposition 2.5 shows the following:

(HP) For each exponent p > 0, the function F (·) is (jointly) Weyl-p-almost automorphic (of type 1) if
and only if F (·) is (jointly) Weyl-1-almost automorphic (of type 1).

We will prove that F (·) is neither (jointly) Weyl-p-almost automorphic (of type 1) nor jointly Weyl
almost automorphic in the vectorial sense. Due to (HP), it suffices to consider the case p = 1 in the
sequel.

We will first prove that F (·) is not Weyl-1-almost automorphic of type 1. Let ε ∈ (0, 2−1 sin 1) be
fixed. If we suppose the contrary, then for each sequence (sk) there exist a subsequence (skm) of (sk), a
mapping F ∗ : R → c0 and a number l0 > 0 such that for each l ≥ l0 there exists ml ∈ N such that for
each m ≥ ml we have (put t = 0):

1

2l

l∫
−l

∥∥∥F(skm + x
)− F ∗(x)

∥∥∥ dx ≤ ε/2.

In particular, for each l ≥ l0 there exists ml ∈ N such that for each m, m′ ≥ ml we have

1

2l

∥∥∥∥∥
l∫

−l

[
F
(
skm + x

)− F
(
x+ skm′

)]
dx

∥∥∥∥∥ ≤ ε. (5.5)

Applying the Newton-Leibnitz formula and a few elementary transformations, we get for each l ≥ l0
there exists ml ∈ N such that for each m, m′ ≥ ml we have

sup
n∈N

∣∣∣∣∣2nl · cos skm + skm′

2n
· sin l

n
· sin skm − skm′

2n

∣∣∣∣∣ ≤ ε.

Plug now sk ≡ k, l = l0 and m′ = m0. Since [n/l sin(l/n)] → 1 as n→ +∞, we obtain that there exist
integers n0, m0 ∈ N such that, for every n ≥ n0 and m ≥ m0, we have

sup
n≥n0

∣∣∣∣∣cos km + km0

2n
· sin km − km0

2n

∣∣∣∣∣ ≤ ε.
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But, if km ≥ km0 + n0, then

sup
n≥n0

∣∣∣∣∣ cos km + km0

2n
· sin km − km0

2n

∣∣∣∣∣
≥
∣∣∣∣∣cos km + km0

2(km − km0)
· sin km − km0

2(km − km0)

∣∣∣∣∣→ 2−1 sin 1, m→ +∞,

which is a contradiction. We can similalrly prove that F (·) is not jointly Weyl almost automorphic in the
vectorial sense and therefore not jointly Weyl almost automorphic.

It remains to be proved that F (·) is not Weyl-1-almost automorphic. If we suppose the contrary, then
there exists m0 ∈ N such that, for every m, m′ ≥ m0, there exists lm,m′ > 0 such that for each l ≥ lm,m′

we have (5.5). Plug now sk ≡ k, m′ = m0 and minorize the norm of the sequence in (5.5) in c0 by the
absolute value of its (km−km0)-th element. This yields that for each integer m ≥ m0 there exists lm > 0

such that for each l ≥ lm we have

1

2l

l∫
−l

∣∣∣∣∣cos 2x+ km + km0

2(km − km0)
· sin km − km0

2(km − km0)

∣∣∣∣∣ dx ≤ ε. (5.6)

Substituting y =
2x+km+km0

2(km−km0)
in (5.6), we simply get

km − km0

2l

2l+km+km0
2(km−km0)∫

−2l+km+km0
2(km−km0)

| cos y| dy ≤ ε/ sin(1/2), l ≥ lm.

This is impossible since the term on the left hand side of the above estimate behaves like

km − km0

2l
· 2 ·

2l+km+km0

2(km−km0)
− −2l+km+km0

2(km−km0)

π
=

2

π
.

More details about the vectorial Weyl almost automorphic type functions will be given somewhere
else.

6 Conclusions and final remarks

In this paper, we have reexamined and slightly generalized various notions of Weyl almost automorphy
([29], [33]). We have analyzed various classes of metrically Weyl almost automorphic functions of the
form F : Rn×X → Y and metrically Weyl almost automorphic sequences of the form F : Zn×X → Y ,
where X and Y are complex Banach spaces. Several illustrative examples, applications of established
theoretical results and brief analysis of vectorial Weyl almost automorphic type functions are provided.

We close the paper with the observation that the metrically Weyl, Besicovitch and Doss classes of
ρ-almost periodic sequences will be considered in [35].
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