@ARTICLE{10.21494/ISTE.OP.2023.0979, TITLE={Première inégalité de Chen pour des produits tordus de sous-variétés d’un espace forme riemannien et applications}, AUTHOR={Abdulqader MUSTAFA, Cenap OZEL, Alexander PIGAZZINI, Ramandeep KAUR, Gauree SHANKER, }, JOURNAL={Avancées en Mathématiques Pures et Appliquées}, VOLUME={14}, NUMBER={Numéro 3 (Juin 2023)}, YEAR={2023}, URL={http://openscience.fr/Premiere-inegalite-de-Chen-pour-des-produits-tordus-de-sous-varietes-d-un}, DOI={10.21494/ISTE.OP.2023.0979}, ISSN={1869-6090}, ABSTRACT={In this paper, the first Chen inequality is proved for general warped product submanifolds in Riemannian space forms, this inequality involves intrinsic invariants (δ-invariant and sectional curvature) controlled by an extrinsic one (the mean curvature vector), which provides an answer for Chen’s Problem 1 relating to establish simple relationships between the main extrinsic invariants and the main intrinsic invariants of a submanifold. As a geometric application, this inequality is applied to derive a necessary condition for the immersed submanifold to be minimal in Riemannian space forms, which presents a partial answer for the well-known problem proposed by S.S. Chern, Problem 2. For further research directions, we address a couple of open problems ; namely Problem 3 and Problem 4.}}