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RÉSUMÉ. L'objectif de ce travail est d'évaluer le niveau de fiabilité de la fixation par min-plaques suivante l'opération 

chirurgicale. Un modèle éléments finis en 3D est développé pour étudier les effets négatifs concernant la stabilité de la 

fracture. Durant l'opération chirurgicale, les muscles peuvent être abimées où coupées. Pour cela, l'incertitude sur le 

chargement doit être intégrée pour obtenir une conception fiable. Plusieurs scenarios (modes) peuvent conduire à la 

défaillance. Le scenario le plus important est les contraintes de von-Mises qui peuvent être comme indicateur de la 

fracture. L'os possède un comportement anisotrope. Pour cela, une approximation isotrope équivalente est intégrée pour 

réduire le temps de calcul. Le deuxième scenario est la pression de contact entre les surfaces de la fracture. Le troisième 

mode est le déplacement relatif maximal dans la zone de la fracture. An algorithme de fiabilité est développé pour 

identifier les différents modes de défaillance. Les résultats sont effectués sur une photo orthopantomogramme d'un 

patient male de l'âge de 28 ans. 

ABSTRACT. The objective of this work is to assess the reliability level of mini-plate fixation following surgical operation. A 

3-dimensional finite element model is developed in order to study the negative effect due to the stabilization of the 

fracture. Since muscles can be cut or harmed during surgery and consequentially cannot operate at its maximum 

capacity, there is a strong need to introduce loading uncertainties in order to obtain reliable designs. Several scenarios 

(or modes) may lead to failure. The first important failure scenario is the von Mises stress of all components which 

presents the fracture indicators. The bone structure possesses anisotropic behaviors. An optimized yield stress/elasticity 

modulus formulation is integrated using an equivalent isotropic approximation in order to reduce the computing time. The 

second failure scenario is the contact pressure which should not exceed a maximum pressure pain threshold. The last 

failure mode is the relative displacement (gap) between two fracture surfaces which should not exceed a prescribed value 

in order to obtain rapid bone healing. A reliability algorithm is next developed to identify the single and multiple failure 

mode cases. The different results are carried out considering a clinical case of a male patient of 28 years of age.  
MOTS-CLÉS. Propriétés des matériaux osseux, Fractures de la mandibule, Fixation par mini-plaque, Optimisation des 

structures, Fiabilité structurale. 
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1. Introduction 

Fracture of the mandible is one of the most common bone injuries, and the most common causes of 

injury are vehicle crashes, falls, violence, and sports. In a previous investigation related to mandible 

fracture [1], muscle forces were ignored, and the mandible is clamped at its ends. The only load was 

the bite force. For this loading case, Korkmaz [1] investigated several mini-plate systems and provided 

recommendations regarding mini-plate location, orientation, and type selection. Recently, several 

muscle forces are considered (masseter, temporalis, lateral and medial pterygoïd forces) in order to 

show the importance of these forces [2,3]. Among the data that need to be introduced inside numerical 
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models, material properties are of major importance [4]. The bone tissue is composed of inorganic and 

organic phases and water. On a weight basis, bone is approximately 60 percent inorganic, 30 percent 

organic, and 10 percent water [5,9]. Inorganic components are essentially responsible for the 

compression strength and stiffness, while organic components provide the corresponding tension 

properties. Recently, an optimized formulation developed by Kharmanda [10] was mainly based on the 

inorganic component effects (explicit relationship). According to several experimental works, some 

coefficients were added to the proposed model in order to take in account the organic component 

effects (implicit relationship). The mechanical properties of bone depend on its composition. However, 

composition is not constant in living tissues. It changes permanently in terms of the mechanical 

environment, ageing, disease, nutrition and other factors [11]. In this study, bone anisotropy should be 

introduced to take into account the directional variation of tissue properties and their evolution after 

mini-plate fixation as a function of the applied load magnitude. A direct simulation using bone 

anisotropy can be easily performed, however when considering reliability and optimization processes, 

several stress constraints (all directions) must be used. That leads to a very high computing time. To 

solve this problem, an equivalent isotropic approximation is integrated into an accurate optimized yield 

stress/elasticity modulus bone formulation.  

Traditional deterministic design methods have accounted for uncertainties through empirical safety 

factors. The designer does not take into account uncertainties concerning materials, geometry and 

loading. A number of uncertainties are encountered during the design of replacement systems. These 

uncertainties are resulted from the variability of applied loads and materials properties, in addition to 

that resulting from the design modeling. They can be grouped in three main categories, namely 

irreducible, reducible and statistical uncertainties [12]. In the best scenario in the design of structural 

systems, uncertainties can be reduced or minimized but they cannot be completely eliminated. Thus, all 

parameters of interest in an engineering design can be considered as random variables [13]. In the 

present study, the different external forces are considered as uncertain parameters in the period 

following the surgical operation (convalescence period). In this case, it is considered that there can be a 

frictional contact between fracture surfaces. A reliability algorithm is next developed in order to assess 

the reliability level for single and multiple failure modes. An application on a clinical case of a male 

patient of 28 years of age is finally carried out to show the applicability of the proposed reliability 

strategy.  

2. Methodologies and models 

2.1. Problem description (clinical case study) 

Fig. 1 presents an orthopantomogram of a male patient at the age of 28 years. The surgical operation 

was carried out at Aleppo University Hospital [14]. The current study is carried out after the operation 

in order to test its reliability level. There were no specific complications related to his treatment and the 

healing period was around 3 months. In the studied model, due to the limited influence of the teeth on 

the mechanical response of the mandible, these are ignored and removed in order to simplify the 

computational model. The mono-cortical screws were modeled as simple cylinders of length 

appropriate for penetration. The geometrical modeling of the composite structure is carried out using 

SolidWorks, however the numerical simulation and optimization procedures are performed using 

ANSYS software and APDL commands (ANSYS Parametric Design Language). 
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Fig. 1. Orthopantomogram of a male patient of age 28 years [14]. 

2.2. Material properties: An equivalent isotropic approximation  

For the used material modeling, two elastic behaviors are considered: isotropic and orthotropic. The 

metallic parts (mini-plates and screws) are assumed to be elastic-isotropic and made of titanium with 

Young’s modulus 110GPa, Poisson ratio 0.35, and yield stress 830MPa [15]. The mandible bone 

tissues are modeled using cancellous and cortical layers with elastic-orthotropic behavior [16,17]. Nine 

independent constants have to be used in the orthotropic case to reproduce the material symmetry with 

respect to two perpendicular planes. The values of these nine constants (Table 1) were taken from 

Castano et al. [18]. According to the optimized elasticity’s modulus - yield stress ( - E ) bone 

formulation proposed by Kharmanda [10], the yield stress formulation for the cortical and cancellous 

bone can be written as follows: 
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where 11142EA , 5.129A  are optimized proportionality constants and 94.0/ ER
 is an optimized 

ratio (for details, see [10]). Different values have been used for the tension/compression ratio
CTR /

, from 

0.5 to 0.7 for cortical bone and from 0.7 to 1 for cancellous bone [11]. During habitual activities such 

as gait, the most produced stresses on femur and tibia bone are uniaxial that can be treated as isotropic 

materials [19]. However, in the mandible simulation, the directional variation of tissue properties are 

taken into account. The orthotropic material properties of the cortical and cancellous bone layers are 

considered. In order to apply Equation 1, an approximation based on strain energies equality proposed 

by Bonnet et al. [15] is used to determine Young’s modulus E  and Poisson’s ratio   of an equivalent 

isotropic medium. Here, the bulk modulus of the equivalent isotropic material is given as follows:  
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and the shear modulus is given by: 
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The equivalent Young's modulus can be written as  
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and the equivalent Poisson's ratio as follows: 
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The values of elastic constants obtained for cortical (symphyseal and rami areas) and cancellous bones are 

reported in Table 1 and the corresponding the yield stresses in compression and tension are evaluated using the 

optimized  - E  bone formulation. 

2.3. Boundary conditions 

In this study, several muscle forces are included in order to obtain realistic simulation models. During the bite 

process, the digastric muscles are not very active and therefore not included in analysis [3]. In Fig. 2, an 

illustration of the twelve muscle forces (six on each side) applied to the mandible are shown. The components 

of the applied forces are given in Table 2. 

 

 
Fig. 2. Boundary conditions. 

 

2.4. Reliability analysis 

In structural reliability theory many effective techniques have been developed to estimate the 

reliability, namely FORM (First Order Reliability Methods), SORM (Second Order Reliability 

Method) and simulation techniques [12]. The transformation of the random variables y in the standard 

normalized space is denoted u, calculated by: u = T(y) where T(y) is the probabilistic transformation 

function. The mean value 
im  of the random variable 

iy corresponds to the origin in the normalized 

space (Fig. 2). The reliability assessment can be performed for a single failure mode and for multiple 

failure modes. 

2.4.1. Single Failure Mode (S.F.M.) 

For a given failure scenario   0uH , the reliability index β is evaluated by solving a constrained 

minimization problem: 

    0    :subject to     min   uu Hd  (6) 

with  


2

iu=d  (7) 

where u is the variable vector in the normalized space, measured from the origin see Fig. 3b.  
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a   b 

Fig. 3. Physical and normalized spaces for single failure mode. 

The solution to problem (6) defines the Most Probable failure Point (MPP), see Fig. 3b. The 

resulting minimum distance between the limit state function H(u) and the origin, is called the 

reliability index β [20]. The reliability index that corresponds to the probability of failure, is 

numerically computed as follows  

)( tfP   (8) 

where (.) is the standard Gaussian cumulated function given as follows: 
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For practical structural engineering studies, Eq. (8) gives sufficiently accurate estimation of the 

failure probability [21]. Fig. 4 shows a flowchart of the MPP algorithm. It consists of two nested 

optimization loops: The objective of the first one is to find a failure point belonging to the limit state (

0)( yG ) in the physical space, cf. Fig. 3a. The second loop tests the reliability levels for several 

failure points in order to find the MPP which belongs to the limit state ( 0)( uH ) in the normalized 

space. The MPP state is found at the minimum distance to the origin of the normalized space.  



© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                    Page | 6 

 

Fig. 4. Flowchart of MPP algorithm. 

2.3.2. Multiple Failure Modes (M.F.M.) 

When multiple conflicting criteria are involved and several constraint functions have to be used. The 

reliability index for multiple failure modes 
m  can be evaluated by solving a constrained minimization 

problem: 

    0uHu      :subject to     min  dm  (10) 

where   0uH  is the vector of limit state functions (equality constraints). Fig. 5 shows a general 

illustrative example of the physical and the normalized spaces for double failure modes (limit states). 

The global optimum solution for double failure modes in the normalized space is presented by the 

minimum distance between the intersection point *P and the origin. The developed reliability algorithm 

shown in Fig. 4 provides a global optimum within a reasonable computing time. In some special cases, 

the MPP can be coincided on the intersection point *P  (Fig. 5b). 

 

a  b 

Fig. 5. Physical and normalized spaces for multiple failure modes. 



© 2018 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                    Page | 7 

3. Results 

3.1. Problem simulation 

The finite element simulation is carried out using ANSYS software. Fig. 6a shows a meshing model 

of cortical (symphyseal and rami areas) and cancellous bone layers. The total number of elements for 

all components is 35528: 20236 solid elements (SOLID187: 10-nodes), 15052 contact elements 

(CONTA174: 8-nodes), and 240 spring elements. In the considered loading case, the mandible is 

subjected to a bite force and all muscle forces are active and fixed at its extremities (Fig. 6b). The bite 

force is applied in region A. The applied muscle forces: RightM  and LeftM  denote the sum of masseter 

muscles (region B and C). RightT and LeftT denote Temporalis muscles (region D and E). RightP and LeftP  

denote the sum of medial and lateral pterygoid muscles (regions F and G). The fixation is found in 

regions H and I. According to the experimental results of Kumar et al. [22], the maximum bite force is 

assumed to be: )(44 NFb  after the surgical operation. The muscle forces presented in Table 2 are 

measured at the maximum capacity of the un-fractured mandible by Mesnard et al. [2], and they are 

here taken as normally distributed random variables. Following Hasofer and Lind [20], it is preferable 

to work in a standard normalized space of independent Gaussian variables (Fig. 3b) rather than in the 

space of physical variables (Fig. 3a). Hence, we adopt the law for a normal distribution, and define a 

normalized variable 
iu  by the transformation 

i

ii
i

my
u




  (11) 

where 
iy is a random variable with its mean value 

im and standard-deviation 
i . The standard-

deviations are assumed proportional to the mean values [21].  

 
 

a) b) 

Fig. 6. a) Meshing model and b) Boundary conditions. 

The random variable vector contains 19 components: 1 for the bite force and 18 for the muscle 

forces. In order to get sufficient rigidity and a limited displacement at the fracture line, double I mini-

plates were fixed to the bone with 6 screws as shown in Fig 6. 
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a b 

Fig. 7. a) Total deformation distribution for convalescence period, and b) Normal 

gap distance between contact and target surfaces. 

The different failure modes are constrained by three conditions: The first condition is that the von 

Mises stresses of one or several components should not exceed allowable values (Table 1). The second 

condition is that the contact pressure should not exceed a maximum pressure pain threshold. According 

to Jensen et al. [23], fifteen patients with 24 mandibular condylar fractures were retrospectively 

examined with an average follow-up of 23 months. The worst value of the maximum pressure pain 

threshold was 71 kPa. The last condition is that the relative displacement (gap) between two fracture 

surfaces should not exceed a prescribed value in order to obtain rapid bone healing. According to the 

clinical observations of Cox et al. [24], the upper limit of relative movement of the blocks of a broken 

mandible in the fracture section under a bite force should not exceed 150  m which is defined as the 

limit value of sliding. 

3.2. Reliability assessment  

After surgical operation, the patient is advised to eat soft foods which render in low bite forces. The 

muscle forces are automatically produced to balance the mandible system. Here, it is important to 

introduce the uncertainty of different forces in order to guarantee a safe performance taking into 

account the osseointegration progress and the overloading possibility. The resulting maximum stress 

values at the mean point are presented in Table 4. The muscle forces are proportionally calculated 

relative to the maximum un-fractured mandible capacity [2]. A direct simulation shows that the 

maximum total displacement is 0.1mm and the maximum von Mises stress occurred in lower mini-

plate is 64.45MPa. Here, the maximum initial relative displacement between two fracture surfaces is: 

)(132max m  (Fig. 7a). 

When considering the interval variability to be %50  of the muscle force mean values, both gap 

and contact pressure constraints are violated. On the basis of Equation (10), the reliability index 

problem for a double failure mode case can be written as follows: 
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The first violated constraint is the maximum contact pressure at the fracture line 

0PrPr)( max  ThresholdiuH . The resulting reliability index of the studied structure equals to: 17.4  

that corresponds to probability of failure 5105.1 fP . However, for multiple failure modes, the MPP 

is located at the intersection point of the maximum gap and contact pressure constraints (

0PrPr)( max1  ThresholdiuH  and 0)( max2  wiuH  ). This way the maximum pressure should not 

exceed the threshold value and the maximum gap (relative displacement) at the fracture line should not 

exceed its allowable limit. Here, the resulting reliability index of the studied structure equals to: 

41.4m  that corresponds to probability of failure 6102.5 fP using equation (8).  

4. Discussions 

The primary goal of fracture management is healing of the fractured bone resulting in restoration of 

form and function. Modern traumatology started with the development of osteosynthesis using mini-

plates for the treatment of fractures. The correct position of mini-plates is confirmed in the symphysis 

or parasymphysis fracture respecting the ideal line for osteosynthesis presented by Champy [25]. In our 

previous work [14], structural optimization strategy has been integrated in order to confirm the surgeon 

choice for the current clinical case. The topology optimization process is considered as a conceptual 

design stage to sketch the layout ‘or input’ to shape optimization. Both shape and sizing optimization 

are next considered as a detailed design stage. This integrated structural optimization strategy 

demonstrates the importance of fixation of symphysis or parasymphysis fracture by 2 I plates with 4 

holes. In fact, when increasing the number of screws or holes, the biomechnical effects for stabilizing 

the tow fragments are marginal. The reduction of the number of screws used in the upper plates 

maintains the stability without any effects for increasing the tension in the region of fracture. This 

result helps the surgeon to give him the opportunity to reduce the number of screws without any 

consequence on the stability of fracture with the target to protect adjacent vital structure. However, the 

previous applied deterministic structural optimization strategy does not take into account the 

overloading possibility and the muscle forces capacity. Therefore, it is very important to evaluate the 

reliability level. 

In addition, it has been demonstrated that the resulting maximum stress when ignoring the muscle 

forces, exceeds the yield strength of the bone [14]. However, the integration of different muscle force 

leads to reasonable values because the muscle forces play a positive role in the equilibrium. According 

to Table 3, at the MPPs, the resulting bite force values for single and multiple failure modes are almost 

close to the initial value, that demonstrates the positive role of the muscle forces. During the surgery 

operation, some muscles can be cut or harmed and it cannot be expected that all muscles will operate at 

its maximum capacity. Therefore, there is a strong need to introduce the uncertainty on the muscle 

forces. After having performed a direct simulation where there is no osseointegration layer between 

fracture surfaces, several failure modes may occur in cases. The first failure case is the contact pressure 

constraints which should not exceed a maximum pressure pain threshold. The second one is the 

relative displacement (gap) between two fracture surfaces which should not exceed a prescribed value 
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in order to obtain rapid bone healing. The last failure mode is the von Mises stresses of different 

components which should not exceed target values. Here, an equivalent isotropic approximation is 

integrated to our optimized bone formulation to evaluate the yield stresses of different bone layers 

when considering orthotropic material behaviors. 

 The developed algorithm seeks to find the closest point to the limit state verifying a smallest 

distance to the origin of the normalized space (Fig. 4b). The first violated constraint is the contact 

pressure. Thus, for a single failure mode, the maximum resulting contact pressure value is: 

kPaThreshold 7155.59Pr  . However, for multiple failure modes, both gap and contact pressure 

constraints are violated. The maximum resulting contact pressure value is: kPaThreshold 7145.0Pr   and 

the maximum gap value is: m 150148max   that leads to a larger reliability index value. Therefore, 

the failure will occur on the pressure constraint violation.  

In general, the failure probability of structural studies should be:
 

 Pf ]1010[ 53   that corresponds 

to a reliability index ]25.43[   however in nuclear and spatial ones, the failure probability should be 

very small:
 

 Pf ]1010[ 86   that corresponds to a reliability index ]6.575.4[  . The different results 

in Table 4 show a single failure mode with a reasonable value of reliability index  17.4  that 

corresponds to failure probability 5105.1 fP . Thus, the current study leads to reasonable reliability 

levels when comparing to the structural studies.  

4. Conclusions 

An efficient reliability algorithm is elaborated to identify the failure modes of the mini-plate fixation 

strategy used in human mandible fractures. The reliability evaluation is carried out for the period 

following the surgery operation where there is no connection between the two fracture surfaces. 

Several scenarios may lead to failure. The first important failure scenario is the von Mises stress of one 

or several components that represents the fracture indicators. The bone structure possesses anisotropic 

behaviors. An optimized yield stress/elasticity modulus formulation is integrated using an equivalent 

isotropic approximation in order to reduce the computing time. The second failure scenario is the 

contact pressure which should not exceed a maximum pressure pain threshold. The last failure mode is 

the relative displacement (gap) between two fracture surfaces which should not exceed a prescribed 

value in order to obtain rapid bone healing. The different results are carried out considering a clinical 

case of a male patient of 28 years of age. Two critical failure modes are observed: For a single failure 

mode, the MPP is found on the contact pressure constraint however, for multiple failure modes, the 

MPP is found on the intersection between the relative displacement and the contact pressure 

constraints. For future developments of this strategy, it would be possible to find the optimum position 

of the mini-plates and screws in order to control a required reliability (confidence) level. 
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 Cancellous Cortical Symphyseal Cortical Rami 

xE
(MPa) 960 22900 17000 

yE (MPa) 390 14200 13800 

zE (MPa) 320 10500 10600 

xy  0.3 0.19 0.38 

yz  0.3 0.31 0.23 

xz
 0.3 0.29 0.47 

xyG (MPa) 170 6000 6200 

yzG (MPa) 130 3700 4100 

xzG
(MPa) 90 4800 5400 

K (MPa) 371.43 10184.02 13915.15 

G (MPa) 121.5275 4649.22 5081.49 

E (MPa) 328.73 12105.51 13590.20 

  0.35 0.30 0.34 

C (MPa) 4.72 140 156 

T (MPa) 3.30 - 4.72 70 - 98 78 - 109 

Table 1. Orthotropic bone materials properties and their equivalent isotropic ones 

 

Muscle Forces xF [N] yF [N] 
zF [N] 

Superficial Masseter (SM) 18.2 303.3 12.1 

Deep Masseter (DM) 7.8 128.3 15.6 

Anterior Temporalis (AT) -18.4 104.8 -43.8 

Medial Temporalis (MT) -6.5 36.3 -53.1 

Posterior Temporalis (PT) -3.4 6.8 -37 

Medial Pterygoid (MP) 187.4 325.1 -76.5 

Table 2. Muscle forces [2] 
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Parameters Means 
MPP 

S.F.M. M.F.M. 

BiteF
[N] 

Bite

yF  -44 -47.93 -51.53 

RightM
[N] 

Right

xM  5.46 4.58 6.49 

Right

yM  90.64 82.51 67.14 

Right

zM  5.82 4.40 5.74 

LeftM
[N] 

Left

xM  -5.46 -4.24 -7.70 

Left

yM  90.64 95.77 79.68 

Left

zM  5.82 4.92 7.02 

RightT
[N] 

Right

xT  -5.94 -6.00 -7.78 

Right

yT  31.06 27.27 29.10 

Right

zT  -28.12 -21.62 -33.78 

LeftT
[N] 

Left

xT  5.94 5.58 4.55 

Left

yT  31.06 23.23 22.04 

Left

zT  -28.12 -24.99 -22.52 

RightP
[N] 

Right

xP  39.35 29.09 49.32 

Right

yP  68.27 63.89 83.31 

Right

zP  -16.07 -20.26 -12.66 

LeftP
[N] 

Left

xP  -39.35 -29.71 -55.31 

Left

yP  68.27 52.15 50.89 

Left

zP  -16.07 -18.42 -10.41 

Table 3. Resulting parameter values 
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Parameters Means 
MPP 

S.F.M. M.F.M. 

Upper

max (MPa) 35.94 31.79 46.80 

Lower

max (MPa) 64.45 51.91 93.92 

RamiRight

max (MPa) 22.62 16.58 26.18 

RamiLeft

max (MPa) 18.36 15.30 24.63 

ckSymRightBa

max (MPa) 12.64 12.69 15.09 

ontSymRightFr

max (MPa) 6.28 7.93 13.37 

SymLeft

max (MPa) 4.66 5.16 6.13 

ckCanRightBa

max (MPa) 0.17 0.12 0.21 

ontCanRightFr

max (MPa) 0.24 0.06 0.36 

CanLeft

max (MPa) 0.10 0.11 0.12 

Cor

max ( m  ) 132 125 148 

Can

max ( m  ) 116 113 124 

Cor

maxPr (kPa) 0 59.55 0.46 

Can

maxPr (kPa) 0 0 0 

  --- 4.17 4.41 

fP  --- 1.510-5 5.210-6 

Table 4. Resulting response values 


