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ABSTRACT. As a consequence of the results obtained in a previous work, the study of aggregative reactions in 

closed gas systems is here addressed. Using the IdEP-IdLA mathematical model, the fundamental formulas that de-

scribe both autopoietic and heteropoietic aggregative processes are expounded. Particular emphasis is placed on the 

different roles that chance and necessity play according to the coding level of the processes themselves. The model 

responds coherently with the physical chemistry of reactions in a wide range of conditions, thus being accredited as a 

promising tool of theoretical investigation. In particular, in heteropoietic processes, the need to extend the entropic 

balance to coding agents (not only as order promoters but also as producers of compensatory entropy) is demonstrat-

ed.  

RÉSUMÉ. En conséquence des résultats obtenus dans un article précédent, l'étude des réactions agrégatives dans 

les systèmes de gaz fermés est ici abordée. En utilisant le modèle mathématique IdEP-IdLA, les formules fondamen-

tales qui décrivent à la fois les processus d'agrégation autopoïétique et hétéropoïétique sont exposées. Un accent 

particulier est mis sur les différents rôles que jouent le hasard et la nécessité selon le niveau de codage des proces-

sus eux-mêmes. Le modèle répond de manière cohérente avec la chimie physique des réactions dans un large éven-

tail de conditions, étant ainsi accrédité comme un outil prometteur d'investigation théorique: en particulier, dans les 

processus hétéropoïétiques, la nécessité d'étendre l'équilibre entropique aux agents codants (comme promoteurs 

d'ordre mais aussi comme producteurs d'entropie compensatrice) est démontré. 
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Foreword 

The present study aims to use the IdEP-IdLA model [Ref.1] to simulate aggregative processes of 

heterogeneous gaseous systems when energy, but not matter, is exchanged toward the environment. 

For the benefit of an easier reading of the text, the fundamental hypotheses underlying the IdEP-

IdLA model are summarized below: 

-  the ideal gas equation is accepted as valid 

- ideal elementary particles (IdEP) and related aggregates (IdLA) have a linear frame, free of 

internal vibrations: consequently energy is iso-distributed on 5 degrees of freedom. 

 

The formulas obtained in Ref.1 are also reproposed. 

 

a) The reference exchange reaction is: 

     (   )  ∑    
 
       

      [1] 

 

where 

-   is the molar fraction of the giver compounds 
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-     are the giver compounds consisting of one IdEP  , called the grey particle, and one IdEP 

   of     different colours, called the active primary particle 

-   are the free IdEPs, called passive primary particles, of    different colours  

-     
   represents the generic IdLA of length   (with   = maximum value of  ) variously com-

posed of     active primary particles and a single passive primary particle at the end of the 

sequence 

-     is the molar fraction of IdLAs of length  . 

 

b)    is the energy that must be supplied to a mole of giver compounds to break the internal bonds 

and    is the energy released by a mole of aggregates as a result of the formation of new bonds, 

both in [KJoule/mole] (  
 , energy stored in each of the     different types of      bonds in the 

giver compounds;    
 

, energy stored in each of the (   
       ) different types of       and 

     bonds within the IdLAs;   
 , the number of  -type bonds between     types of      

bonds globally present in the initial system;    
 

, the number of   -type bonds between the 

(   
       ) types of       and      bonds globally present in the IdLAs produced by a 

mole of giver compounds): 

 

   
 

 
∑   

    

   
  
                               [2/a] 

   
 

 
∑ ∑    

 (      )

      
    

   
             [2/b] 

 

c)    is the entropy of the descriptor [  ] of the population of passive primary IdEPs;      is the en-

tropy of the descriptor [  ] of giver compounds;    is the entropy of the descriptor of grey parti-

cles;       is the entropy of the IdLA descriptor: 

 

   ∑   
  
     

 

  
                 (   , disequilibrium factor of [  ]) [3/a]   

     ∑   
   

   
  

 

  
            (   , disequilibrium factor of [  ]) [3/b]   

        (as grey particles are all of the same colour) [3/c] 

      (   ) *   
 

   
     

 

   
  + [3/d]    

( , coding factor ranging from 0 to 1 and       
 

 
 (   )  

 

   
 ) 

 

d)   is the allocation inertia in [m
2
Kg

5/2
] where   and   respectively are the mass in [Kg] and linear 

dimension in [m] of the IdEP: 

 

    √                                          [4/a] 

 

e)    is the volume of the allocation cell of the primary passive particles;      is the volume of the 

allocation cell of the giver compounds;       is the volume of the allocation cell of IdLAs, where 

   is the probability that the generic IdLA has length  ; all of them in [m
3
]: 

 

            
              

 
      [4/b] 

      
 
 

                                                         
 

 
     [4/c] 

      ∏ (      
 
 

 )   
                                       

 

 
 ( ) [4/d] 

(where  ( )  ∑     
 
    ) 
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f)   ,     ,   ,       and   are the entropies of the reactants, of the products and of the mixture re-

spectively in [Joule/°Kmole]. All of them, as a function of the extent of reaction   (  
         Joule/°Kmole is the gas constant;                

   is the number of Avogadro;   

is the absolute temperature, in [°K];   is the molar volume in [m
3
]): 

 

  ( )  
 

 
 (   )(   )     (   )(   ) *  

 

(   )(   )  
   (  )      + [5/a] 

    ( )  
 

 
 (   )      (   )  *  

 

(   )   
   (    )        + [5/b] 

  ( )  
 

 
           *  

 

    
   (  )      + [5/c] 

     ( )  
 

 
  (   )      (   ) *  

 

 (   )  
   (     )         + [5/d] 

 ( )    ( )      ( )    ( )       ( ) [5] 

  

g)     is the reaction entropy in [Joule/°Kmole] (  , extent of reaction at the equilibrium): 

 

     *    
 

  
 (    )  

 

(    )
+     (   )      

    (   ) *
 

 
∑     
 
            +      *

 

 
             +    [6] 

 

h)   ,     ,   ,       and   are the enthalpies of the reactants, of the products and of the mixture 

respectively in [KJoule/mole]. All of them as a function of the extent of reaction   (      
  , molar energy balance) 

 

  ( )  
 

 
(   )(   )                    [7/a] 

    ( )  
 

 
 (   )                   [7/b] 

  ( )  
 

 
                                           [7/c] 

     ( )  
 

 
 (   )                  [7/d] 

 ( )  
 

 
                                      [7] 

 

i)     is the reaction enthalpy in [KJoule/mole]: 

 

     (  )   ( )                     [8] 

 

j) Derivatives of entropies in [Joule/°Kmole] with respect to the extent of reaction are: 

 
   

  
   (   ) *

 

 
      

 

(   )(   )  
   (  )    + [9/a]                

     

  
    *

 

 
      

 

(   )   
   (    )      + [9/b] 

   

  
   *

 

 
      

 

    
   (  )    + [9/c] 

      

  
  (   ) *

 

 
      

 

 (   )  
   (     )       + [9/d] 

  

  
 
   

  
 
     

  
 
   

  
 
      

  
  [9] 

  *(  
 

 
   

 

   
)  (   ) (

 

 
 ( )     )   (

 

 
         )  (   )  +  

 

k)  ( ) is the affinity: 

 

 ( )   
  

  
     [10] 
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l)    is the weighted average of the IdLAs length, regardless of the aggregation rule: 

 

   
 

   
 [11] 

1. Random autopoietic aggregations  

Let the system of reactants and products described by [1] be a closed one. This means that 

exchanges toward the environment (which is supposed to be maintained at constant pressure and 

temperature) involve energy but not matter. Let us also suppose that the binding energies in the 

giver compounds are equal to each other (  
    ) and the same for the binding energies in IdLAs 

(   
 
   ). Then, in this case [2/a] and [2/b] take the following forms: 

 

   
  

 
∑   

    

   
 
  

 
     

                           [12/a] 

   
  

 
∑ ∑    

 (      )

   

   

   
 
  

 
     

           [12/b] 

 

so that the molar energy balance of the reaction is: 

 

           ( 
    )                             [13] 

 

In autopoietic mode the coupling between particles can then take place only in a random way
1
 

such that the sequencer of the IdEP-IdLA model, providing particles assembly, operates without 

memory and draws at random from the primary particle tank: therefore in [3/d] we have    . 

Then, due to the total randomness in coupling, the probability    that a generic aggregate is of 

length   (independently of the colour sequence) can be easily calculated. In fact, the probability that 

the sequencer forms an aggregate with length  , is that it proposes     active particles (with a 

presentation probability that, regardless of colours, is equal to  ) and a single inactive closing 

particle (with a presentation probability that, regardless of colours, is equal to    ). Therefore 

 

    
   (   ) [14] 

 

which leads to the populations indicatively represented in Fig.1. The table shows also the average 

lengths   ( ) of each population, weighted according to the probabilities   
2
: 

 

   ∑   
 
     (   )∑      

     
 

   
 [15] 

 

which in this specific case confirms [11], obtained through a more general reasoning. Consequently, 

the volume of the allocation cell of the IdLA mixture (whose percentage composition is supposed to 

be constant when   varies) and its logarithm assume, on the basis of [4/d], the forms numerically 

calculable: 

 

      ∏ (      
 
 

 )(   ) 
    

    [16/a] 

                                                           
1 This is a purely theoretical hypothesis, not very close to the reality of ordinary chemical reactions but far from being inade-

quate, as will be seen later, to constitute a useful starting point for the study of codified aggregations. 
2
 The series ∑     

      (   )  is recalled here. 
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(   )∑        

     [16/b] 

 

 

 

Figure 1. Random aggregation: IdLA populations as a function of   

 In other terms,  ( ) in [4/d] takes the form 

  

  ( )  (   )∑        
     [17] 

 

which converges
3
 on the values shown in Fig.2. 

 

 

 

Figure 2. Random aggregation: ∑     
 
     as a function of   

                                                           
3
 The value of Λ increases significantly with α: for α = 0,05 the sum converges on a stable value of the fourth significant digit al-

ready with Λ = 5 while for α = 0,95 the same degree of precision is obtained with Λ = 160. 
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We have now all the elements needed to carry out the calculations with the formulas recalled in 

the foreword. It is sufficient to define: 

a) temperature T and pressure p  

b) allocation inertia   of the reference IdEP, combining mass μ and dimension δ  

c) entropy    of the descriptor [  ], combining the number of colours    and the disequilibrium 

factor    of passive primary particles  

d) entropy     of the descriptor [  ], combining the number of colours     and the disequilibrium 

factor     of active primary particles  

e) molar fraction   of the giver compounds 

f) molar energy balance   . 

 

It is therefore a matter of choosing appropriate numerical values for each of these parameters. 
First of all, as the main purpose of this work is the study of aggregative processes of biological 

interest, we can assume that temperature and pressure vary very little: indeed we can certainly adopt 

the standard values of these quantities (T=298,15 °K and p=101.325 Pa; consequently V=0,024465 

m
3
/mole)

 4
 as constant and invariable.  

Secondly, for the same reason stated above we can limit the investigation to values of the 

allocation inertia   ranging between       and       [m
2
Kg

5/2
]. As clearly shown in Fig.3, such 

values largely cover ranges of   and   that can be considered pertaining to elementary components 

of biological interest. However, it is appropriate to consider that the allocation inertia is a relatively 

unimportant parameter since, although it affects the absolute entropy (through the volumes of the 

allocation cells as clearly shown by [5]) it does not influence the derivative of the entropy (as shown 

in [9]), neither affinity (as shown in [10]), nor reaction entropy (as shown in [6]). 

 

Figure 3. Trend of  ( ) for different values of   

                                                           
4
 It is worth remembering that a temperature close to the environmental conditions is a necessary condition for the validity of 

the absolute entropy expression used in the calculations. Only at these thermal levels can the vibrational contribution to entropy 

be considered negligible and therefore the Markovian expression obtained in [Ref.1] (on which construction of the whole model 

is based) is valid.   
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Figure 4. Trends of entropy  ( ) of a generic descriptor for different values of   

Thirdly, as far as entropy   of a generic descriptor is involved, the number of colours   and the 

disequilibrium factors   play5 as shown in Fig.4. But even these parameters are relatively 

unimportant in the case of random aggregation since, once again, if on the one hand they influence 

the absolute entropy, on the other they do not affect either its derivative or affinity. Anyway, most 

entropy calculations are carried out with            , a value which, in any case, covers a 

rather wide range of μ and δ combinations: this choice is also justified in the light of the sensitivity 

analysis that will be carried out in the following paragraph when the coded aggregations will be 

examined (see Fig.17). 

                                                           
5 Note that entropy is annulled both for      (whatever the value of  ) and for      whatever the value of  : these are in fact 

two different ways to translate the same information into mathematical terms, namely that the system is made up of indistin-
guishable particles.  
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Figure 5. Random aggregation: trends of  ( ) for different values of ρ and α (           ) 

Given the above, the table of Fig.5 shows the trend of  ( ) when   and   vary, while   ,   ,     
and     are such that            .They give the following indications: 

 in all the cases explored, entropy initially increases to reach a maximum and then decreases: 

 ( ) has a stable maximum around       for        while for        the maximum 

moves towards decreasing values of  . The aggregative process, therefore, implies an initial 

increase of the disorder and a subsequent recovery of more ordered internal structures. In 

particular for high concentrations of giver compounds the phase of the initial disorder is 

short while the subsequent construction of the order is consistent 

 all other conditions being equal, the allocation inertia   of the reference IdEP has a signifi-

cant influence on the initial entropy value and therefore on the value of  ( ). In particular, 

the greater the inertial characteristics of the IdEP, the greater is the system’s entropy in all 

phases of the aggregative process. This is because, as already pointed out in Ref.1, heavier 

particles can access a greater number of energy levels, determining an increase in the num-

ber of microstates that are physically possible, as provided by statistical mechanics 
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 conversely, the allocation inertia   does not affect the shape of  ( ), determining only ver-

tical translations of the graphs. In particular it does not affect the maximum which depends 

exclusively on  . And, in fact,     does not depend on  , as already highlighted above. 

 

Although not evident from the graphs, it should finally be noted that, according to [9], it is 

always: 

 

a)       
  

  
             b)       

  

  
    [18] 

 

Enthalpy  ( ) depends only on   and on the molar energy balance    according to [7]. Its 

graphic representation (see Fig.6 in the particular case of      ) is a rectilinear segment with its 

origin in  ( )  (   )   and angular coefficient    . In the case of exothermic reactions, 

particularly of our interest, the slope is negative. 

 

Figure 6. Random aggregation: trends of  ( ) for different values of    with       

As a consequence of the trends of  ( ) and  ( ) just highlighted, the free energy  ( )  
 ( )    ( ) can only have a shape with the convexity facing upwards in the whole range     
 . Moreover, due to the presence of a maximum in  ( ),  ( ) has a minimum in correspondence 

with the extent of reaction    for which affinity expressed by [10] is zero. This happens when 

 
  

  
 
   

 
 [19] 

 

The graphs in Fig.7 show the results of the calculations in the case of exothermic reactions 

(for         and             as previously specified). 

 

     



© 2021 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr                                                                    Page | 10 

 
 

Figure 7. Random aggregation: trends of  ( ) for different values of   and     

(        and            ) 

They give rise to the following considerations: 

- with the same energy balance   , the higher the   concentration of the giver compounds, the 

lower the free energy  ( ); similarly, with the same   the free energy reduces as    increases 

- for relatively small values of the     product (⌊   ⌋   ) the free energy  ( ) reaches the 

minimum in correspondence to the values of the extent of reaction quite far from 1. As the 

    product increases, the minimum of  ( ) is pushed more and more toward the right: in 

this regard it is worth specifying that, for the [18/b], there is always a       such as to satisfy 

[19], whatever the value of    . 

 

And now we come to the calculation of the reaction functions    ,     and     to determine 

which the extent of reaction at equilibrium    must be known. This is obtained by solving numeri-

cally the equation  ( )     where the expression of affinity is given by [10]. In this case, as al-

ready mentioned, both the allocation inertia   and the entropies    and      of the reagent de-

scriptors are irrelevant. Basically, only two parameters contribute:   and   . The results of the cal-

culations are summarized in the table of Fig. 8 where for each combination of α (ranging between 
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0,1 and 0,9) and of    (ranging between -60 and +20 KJoule/mole) the values of   ,    ,     and 

    are displayed. Examination of the results, together with the analysis of graphs in Fig.9 and in 

Fig.10, reveals the following: 

- in the case of endothermic reaction the aggregative process is largely incomplete: it starts and 

runs for a while only if the α concentration of the giver compounds is low. As   grows,    de-

creases until, for higher   values the reaction hardly even starts. Consequently, with the 

growth of   the reaction entropy, the reaction enthalpy and the reaction free energy tend as-

ymptotically to zero:     always remaining positive and     always remaining negative 

- also for      the reaction proceeds at a slower rate the higher is the value of   and even in 

this case any level of aggregation always implies an increase of the overall disorder in the final 

system. The maximum reaction development is recorded for a value of   just under 0,3 with an 

extent of reaction to equilibrium equal to about 0,62 

- in the case of exothermic reactions, the higher the dissipation of thermal energy in the envi-

ronment, the more the process tends to develop completely. However, the reaction entropy be-

comes negative only for relatively high values of  : in particular, only when       is the fi-

nal system more ordered than the initial system. The free energy of reaction, always negative, 

has a minimum that moves to the right (towards high values of  ) the more energetic the reac-

tion is. 

 

It therefore appears evident that both a high exothermicity of the reaction [1] and a high 

concentration of giver compounds play in favour of a complete development of the aggregation 

process. From the analysis of the data shown in Fig.8, those processes for which        

KJoule/mole and       can be considered complete over 99.9%. It may be useful to observe that, 

in these cases, the expressions of the reaction functions for a random aggregation take the following 

simplified forms: 

 

     *
 

 
(   )  ( )  

 

 
       + [20] 

        [21] 

                   *
 

 
(   )  ( )  

 

 
       + [22] 
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Figure 8. Random aggregation: values of   ,    ,     and     as a function of   and     
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Figure 9. Random aggregation: trends of     as a function of   and    

 

 

Figure 10. Random aggregation: trends of     as a function of   and    

2. Codified autopoietic reactions  

Let us now suppose that the binding energies   
 , holding the particles of the giver compounds 

together, are different from each other depending on the colours of the primary particles and that the 
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same is true for the binding energies    
 

 among primary particles in IdLAs. In this case, the energy 

   that must be supplied to a mole of giver compounds to break the internal bonds, and the energy 

   released into the environment by a mole of aggregates for the formation of new bonds, remain 

expressed in their general form by [2/a] and [2/b]. This time the autopoietic formation of the 

aggregates follows a preferential path, guided by the differences between the elementary energies 

involved in each single coupling. It is assumed that such a way of evolving can be simulated in our 

mathematical model by imposing a memory on the primary particles sequencer. It does not matter, 

for our study, that an analytical relation between the chemical kinetics determined by the 

differentiation of bonds and the probabilistic structure of the sequencer, is identified. It is enough to 

admit that such a relationship exists and that there is an appropriate value of the coding factor   

(between 0 and 1) such as to represent mathematically the effect on entropy of the driving force 

implicit in the system. 

Due to the fact (as already highlighted in Ref.1) that the relationship between the sequencer mode 

of operation and the coding factor is not biunivocal, different IdLA populations may correspond to 

the same value of  . We must then also make hypotheses on the aggregates population, i.e. an 

expression must be given to  ( ), as was done in the previous paragraph in the case of random 

aggregation. In fact, if the IdLA’s average length    depends only on   according to [11], the 

probabilistic distribution of lengths, affecting  ( )  ∑     
 
    , depends on the way the 

sequencer works. We then wonder within what limits the sequencer can make the summation value 

vary.  

To start, let’s assume that the sequencer produces aggregates all of the same length    (even if not 

having the same colour sequence). In this case we can then place: 

 

   ∑     
 
            

 

   
 [23] 

 

Now, if the single type of aggregate of length    is replaced by two aggregates with lengths    and 

   and with probability    and   , then compliance with [11] requires that 

   

          
 

   
    

 

so that [23] can also be written as follows 

 

      
    [     (    )  ] 

 

At the same time summation ∑     
 
     takes the form 

 

                   [  
    

(    )]  

   
and, as for     ,     ,     , is always 

     (    )     
    

(    ) 

 

then necessarily: 

 

      
 

This means that the passage from a single type of IdLA to two types of IdLAs (  being equal and 

therefore   ) implies a decrease in the value of the summation ∑     
 
    . Since the procedure just 
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proposed can be repeated many times, in general we can say that the more differentiated is the 

population of aggregates produced by the sequencer, the lower is the summation value. In other 

words, the less strict are the conditions dictated by the sequencer, the more articulated and various is 

the aggregates population and the lower is the value of ∑     
 
    . At the limit, when the 

sequencer loses any ability to manage particle coupling, the codified aggregation degenerates into 

random aggregation and the summation value reaches the minimum. The domain within which 

∑     
 
     can vary according to the code of the sequencer is therefore limited by two calculable 

values: downwards by the value that the parameter assumes in case of random (autopoietic) 

aggregation according to [17] 

 

    ( )    ( )  (   )∑        
     [24/a] 

 

and upwards by the value assumed in the case of production of aggregates all of the same length 

according to the [22] 

 

     ( )    
 

   
 [24/b] 

 

 
 

 
 

       

        

        

        

        

        

        

        

        

        

        

        

        

        

        

Figure 11. Trends of      and       as a function of   

The graphs in Fig.11 show the trends of     ( ) and     ( ) and consequently identifies the 

area of the possible values for  ( )  ∑     
 
    . 

Even though, as already said, there is no two-way relationship between this summation and  , in 

order to limit the number of independent variables in calculations, the following matching rule 

between these two parameters has been adopted: 

 

    ( )      ( )   [    ( )      ( )] [25]  

 

The matching is correct and exclusive for     and for     since it reproposes [24/a] and 

[24/b] respectively. It is correct but not exclusive for the values of   quite far from the extremes. 

Once the matching rule [25] has been established, the entropy trend can be calculated by means of 

[5].  
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We now propose to compare the behaviour of  ( ) in the case of coded autopoietic aggregation 

(   ) with the behavior of the same thermodynamic function in the case of random aggregation 

(   ) discussed in the previous paragraph. Beyond the fact that the calculations can be carried out 

in a very wide range of cases, by varying as desired the many parameters involved, in order to 

appreciate the salient differences between the two scenarios, the examination of a limited number of 

situations is sufficient. By way of example, the graphs of Fig.12 show the trend of the entropy  ( ) 
for different values of   and  , in the case of a weakly exothermic reaction (       

KJoule/mole), with         m
2
Kg

5/2
 and            . This is an emblematic case, sufficient 

to highlight the most significant effects of the coding. 

 

Figure 12. Autopoietic coded aggregation: trends of  ( ) depending on   and   

(      ,            ,        ) 

It seems evident that the presence of a code guiding the particles coupling always implies a re-

duction in entropy with respect to the random aggregation process. This is all the more consistent 

the higher the coding factor is and the more the reaction proceeds. Also in this case all curves have a 

maximum point, but it tends to move to the left as   increases. This shift towards lower values of   

has a considerable impact on free energy and affinity and therefore on the extent of reaction at equi-

librium. In fact, given that the enthalpy  ( ) is not conditioned by   so that even in the case of cod-

ed autopoietic aggregation the graphs of Fig.6 continue to apply, the calculation of  ( ) is immedi-

ate. The graphs of Fig.13 show its trend for different values of   and   and for the values of   ,  , 

   and      specified above. It is evident that, all other conditions being invariant, the higher is the 

value of  , (i.e. the more stringent the sequencer encoding), 

- the more incomplete is the reaction (the minimum moves more and more to the left) 

- the higher is the value that the free energy maintains throughout the aggregative process until 

its conclusion. 
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Figure 13. Autopoietic coded aggregation: trends of  ( ) depending on   and    

(      ,            ,        ) 

It is therefore appropriate to examine more carefully where the extent of reaction to equilibrium 

   is positioned as   varies. This knowledge is in fact essential, as already highlighted  for random 

aggregations, to calculate the reaction functions. Given that, this time too, the equation  ( )    

must be numerically solved, the table in Fig.14 illustrates on a wide range of   and  , the marked 

tendency of the reaction to find the equilibrium for ever lower values of    as the coding factor   

increases, all other conditions being equal. This effect is all the more pronounced the lower the   

concentration of the giver compounds. The data presented refer to a value of the energy balance    

(-20 KJoule/mole) specifically chosen to make the phenomenon evident (the reaction is significantly 

incomplete), but it can be said that the trend is general.  

As we know   , then    ,     and     can finally be calculated. 

 

 

Figure 14. Autopoietic coded aggregation: values of    as dependent on   and   

(      ,            ,        ) 
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The table in Fig.15 shows the results of the calculations when   and   vary, still for        

and            .
6
 Moreover in Fig.16 the trends of the reaction free energy as dependent on 

the explored parameters are reproposed in graphic form. 

  

Figure 15. Autopoietic coded aggregation: values of    ,     e     as dependent  

on   and   (       e            ) 

It is evident that, all other conditions being equal (and specially with the same energy balance 

  ),  

- the value of |   | is lower when the coding factor is higher 

- reaction enthalpy is significantly affected by the coding factor for small values of  . In fact, 

when the concentration of giver compounds is low,    decreases rapidly with the increase of  ; 

for the opposite reason, the closer   approaches 1, the less     is affected by   

- as the coding factor increases, the final system finds the equilibrium for gradually higher val-

ues of free energy. 

 
 

 
 

        

         

         

         

         

         

         

         

         

         

         

         

         

         

         
Figure 16. Autopoietic coded aggregation: trends of     as dependent on   and    

(       and            ) 

                                                           
6
 This time, unlike in the case of random aggregation, the entropies of the descriptors matter as it is η ≠ 0. On the other hand, 

the inertial characteristics of the reference IdEP continue to be irrelevant. 
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However, it would be inaccurate to conclude that a codified autopoietic process leads a system to 

a higher final free energy than a random one, for there is no system that can spontaneously (in an 

autopoietic way) evolve in both a random and a codified way, dissipating the same molar energy. 

An autopoietic aggregative reaction (random or codified as it may be) always develops out of 

necessity, driven by the matrices of the binding energies (and by the matrices of the bonds). The 

results are necessarily implicit in the premises. The molar energy balance    is therefore the result 

of a very precise set of initial conditions, which characterize the system and make it evolve in a 

unique way. This does not mean that the same value of    cannot be produced by different binding 

energy matrices, but they will always be different systems.
7
 The condition “with the same energy 

balance   ” specified in the premise of the previous observations must therefore be strictly framed 

in a logic of comparison between different systems. 

Finally, full reactions deserve special attention (    ). As far as complete aggregative 

processes are concerned, relation [6] takes the form: 

 

     *
 

 
(   ) ( )  

 

 
     (   )   (   )                  + [26] 

 

This differs from [20] by the non-zero value of  . The graphs in Fig.17 show the results obtained: 

in this case the opportunity is also taken to verify how different entropies of the reactant descriptors 

affect the results. The following considerations apply: 

- as a rule, the higher the coding factor  , the lower (higher in absolute value) is the reaction 

entropy. Coding always implies the achievement of a higher degree of order 

- for any value of  , when the descriptors of the primary particles have higher entropies, the 

final entropy of the system is always lower. In other words, at parity of any other condition, 

between two systems with different degrees of initial disorder, the more disordered of the two 

gains more from the aggregation process in terms of final order, than the other. 

 

 

Figure 17. Complete codified autopoietic aggregation:    ( ) trend  

for different values of  ,    and     

                                                           
7
All other conditions being equal, it is possible to hypothesize matrices of bonds that generate higher    values with lower   

coding factors and vice versa.  
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The reaction free energy     is therefore a function of  ,  ,    and     (as depending on    ) 

and of    (as depending on    ). Then, posited that            , the results of the calculations 

performed are shown in the graphs of Fig.18. The following considerations apply: 

- normally, with the same energy balance   , the higher the coding factor   the higher (lower in 

absolute value) is the reaction free energy. The coding always pushes in the direction of a final 

state of the system characterized by a higher residual free energy 

- all other conditions being equal, when the negative energy balance    increases, the system of 

aggregates reaches lower and lower energy states 

- with the same energy balance   , the variation of   substantially implies a vertical translation 

of the curve    ( ) that keeps the minimum point unchanged. The minimum point moves 

more to the right (towards higher values of α), the higher is the negative energy balance. 

 

Also in this case, for a correct interpretation of these remarks it is important to remember once 

more that autopoietic aggregations are not in competition with each other. Each system has its own 

code, written in the chemical-physical characteristics of the particles: a code that determines by 

necessity the evolution of that particular system. Any comparison between different processes must 

therefore be made with this basic reservation. in an autopoietic process it is not possible to act freely 

on   and    that are inherent to the system itself. In substance, it would be inappropriate and even 

misleading to look at the groups of curves of fig.18, at parity of   , as possible alternatives for the 

same system. 

       

Figure 18. Complete codified autopoietic aggregation:    ( ) trend 

for different values of   and    (          ) 

3. Heteropoietic aggregations 

Let's now suppose that a certain system is characterized by a matrix of bonds such that, in 

autopoietic regime, the aggregative process develops with      and       . Let us also 

suppose that entities external to the system itself, able to force the autopoietic orientation of the 

aggregative process, intervene by imposing their own code. Thus, we are in the case of heteropoietic 

aggregation and, within our model, the combination between IdEPs is therefore guided by a 

sequencer with memory. Its functioning logic does not derive from the matrices of the binding 

energies but rather from the special codifying attitude of these entities which do not strictly belong 
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to the reactive system: we call them ordering agents. So, let’s indicate with    and with     

respectively, the coding factor and the molar energy balance in the heteropoietic regime. 

Let us finally suppose that the ordering agents as such, produce a more orderly final state than 

that which the system would achieve if left free to aggregate in an autopoietic way, that is to say 

       
 

If so, in what relation are     and    ? In the case of autopoietic aggregation the matrix of 

bonds [   
 
] is certainly such as to maximize the energy dispersed, in order to make the system of 

aggregates reach the most stable condition possible. Given the matrix [   
 
], the value     will be 

the highest value (in absolute value) that can be achieved according to [2/b]. Consequently, the 

forcing action exerted by the ordering agents on [   
 
] can result only in a decrease (always in 

absolute value) of the molar formation energy   , that is 

 
|   |  |   | [27] 

 

where the sign of equality applies only if the autopoietic aggregation is random
8
. 

As far as the mathematical treatment of the model is concerned, nothing changes with respect to 

what was set up and developed in the case of autopoietic codified aggregation. Therefore, all the 

numerical results acquired for the autopoietic processes can be immediately applied to heteropoietic 

scenarios except the observation which closed the discussion on     (both in the case of incomplete 

as well as complete aggregation) in the previous paragraph. In the case of heteropoietic aggregation, 

in fact, the direct comparison with codified autopoietic aggregation is feasible since the proposed 

scenario provides that the same system can actually evolve in several ways: as an autonomous and 

random evolutionary path if left to itself or as any of a multiplicity of heterodirected and variously 

codified paths if in the presence of appropriate codifying entities. But the system is always the same. 

In particular, it is always characterized by a unique set of values of the binding energies and 

therefore by values of the molar energy balance     and    , linked by [27]. That direct 

comparison which was precluded in the case of autopoietic systems, is now possible. 

From this point of view, the results presented in Fig.15 can be schematically summarized as in 

Fig.19 where the reaction enthalpies    , the reaction entropies     and the reaction free energies 

    have been apexed with “a” for the autopoietic codified aggregation (therefore characterized by 

     and       ) and with “h” for the heteropoietic codified aggregation induced by ordering 

agents and characterised by      and       . In general, whatever the value of  , if the 

reaction is exothermic and      , then         and   
    

 .  

Consequently: 

- for [8], it is always    
     

  or, since the reaction enthalpies are always negative, 

|   
 |  |   

 | 

- for the results shown in the table of Fig.15 it is always    
     

   

                                                           
8
 In this case, in fact, the molar energy balance does not depend in any way on the matrix of bonds as shown by [13]. In reality, it 

seems reasonable to suppose that the action of the ordering agents is all the easier the more uniform the matrix of bonds is: an 

autopoiesis close to random aggregation will certainly be easier to be forced than an autopoiesis with a high coding factor. 

Moreover, the aggregates produced will be more stable. On the other hand, a strong differentiation of the binding energies and 

therefore a high value of the autopoietic coding factor, will require a stronger action of the ordering agents and the whole com-

plex of aggregates produced will be less stable.  
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- for the results shown in the same table and graphically represented in Fig.16 and in Fig.17, it 

is always    
     

  or, for negative reaction free energies, |   
 |  |   

 |. 
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Figure 19. Qualitative comparison between the energy development of the same  

system following autopoietic and heteropoietic aggregative processes.  

It should be noted, however, that for any aggregation mode, the spontaneity of the process is 

always implied. Then a question immediately arises. Why should the system evolve with 

heteropoietic mode if the state of minimum energy is reached only with autopoietic aggregation? 

How is it possible that the ordering force of external entities can win the competition with the 

natural attitude of the system to evolve in an autopoietic way if this second type of aggregation is 

such as to achieve a lower energy level? There can be only one explanation within a physics 

governed by the second principle of thermodynamics: it is the ordering agents themselves that, 

while bearing the aggregation code, at the same time must be the seat of an additional thermal 

dispersion. In the case of heteropoietic aggregation, the system on which to calculate the energy 

balance must necessarily be an extended system that also includes the ordering agents. 

Fig.19 shows the gap between the reaction free energies in an autopoietic aggregation and a 

heteropoietic aggregation. This difference can be compensated for only if the ordering agents 

dissipate an amount of energy at least a little higher than   , a dissipation to which an increase   of 

entropy must correspond such that 

   
  

 
   [28] 

 

This minimum additional entropy is called addressing entropy and the associated negative 

enthalpy     is called compensatory dispersion. 

It is evident that the production of addressing entropy within the extended system (reactants + 

ordering agents) is a necessary and sufficient condition for a heteropoietic aggregation not to violate 

the second principle of thermodynamics: only in this way can the flow of information contained in 

the sequencer's code be channeled into the reagent system. On the contrary, should the 

thermodynamic contribution of the ordering agents be absent, the codified aggregation could not 
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take place for lack of the necessary compensatory dispersion and therefore an adequate increase of 

disorder in the extended system.  

This observation opens the way to the thermodynamic interpretation of the aggregative processes 

of biological interest but at the same time raises profound questions about the possible dynamics of 

biogenesis. 

Conclusions 

The IdEP-IdLA model is able to provide a comprehensive description of complete and 

incomplete aggregation processes in closed systems, both in autopoietic (random or coded) and 

heteropoietic modes. In particular it remains proven that the heteropoietic mode of assembling 

implies that ordering agents are involved also in the energetic aspects of the reaction and not only in 

informative transmission of the code contents. Although external to the system, they are necessarily 

the site of specific dissipative processes, thus decisively contributing to the entropic balance. This 

makes the model promising for the study of biological aggregation processes but at the same time 

suggests the difficulty of explaining the birth of life on earth.   
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