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Introduction

In this paper, a subcategory of any category is always assumed to be full.

A subcategory B of a category C is said to be reflective if the inclusion functor B −→ C has a left
adjoint. Examples of such are the subcategories of Hausdorff spaces, Tychonoff spaces, compact spaces
and realcompact spaces of the category Top of topological spaces. The reflective hull of a subcategory
W of C is the smallest replete, reflective subcategory of C containing W . Such a subcategory does not
always exist, for the intersection of all replete reflective subcategories of C containing W may not be
reflective, as is shown by Adámek and Rosický [2]. The existence of reflective hulls and their properties
have been extensively studied by several authors [2, 3, 20, 21, 28, 38].

We, in Theorem 1.8, show that a replete reflective subcategory of C containing W as a codense sub-
category is necessarily the reflective hull of W , and is therefore unique when it exists. We call such
a subcategory the strong reflective hull of W . Coreflective subcategories, coreflective hulls and strong
coreflective hulls are dually defined. The notion of the so-called strong reflective hull is strictly stronger
than that of the reflective hull, in the sense that there are examples of reflective hulls which are not strong
(see Remark 4.4 and Example 1.11).

When it exists, a (pointwise) right Kan extension R of a functor F : A −→ B along itself has a monad
structure. This monad R is called the codensity monad of F ; for R reduces to the identity functor 1B iff
the functor F is codense. One has a dual notion of density comonad of the functor F .

A monad (T, η, μ) is said to be idempotent when its multiplication μ : T 2 −→ T is an isomorphism.
Similarly, a comonad is said to be idempotent if its comultiplication is an isomorphism.

We define a subcategory W of C to be left Kan extendable if the inclusion functor W −→ C has
an idempotent density comonad (L, ε, δ). When this is the case, then the category of L-coalgebras is
denoted by Wl[C] and the forgetful functor U : Wl[C] −→ C is fully faithful and injective on objects.
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Consequently, Wl[C] is viewed as a subcategory of C. Dually, the subcategory W of C is said to be
right Kan extendable provided that the inclusion functor W −→ C has an idempotent codensity monad
(R, η, μ). In this case, the category of R-algebras is denoted by Wr[C].

The two notions of strong reflective hull and right Kan extendability are closely related: a subcategory
W of C has a strong reflective hull iff W is right Kan extendable in C. When this is the case, then the
strong reflective hull of W is precisely the subcategory Wr[C] of C (dual of Theorem 3.6).

As applications, we prove that the subcategory of Top whose only object is the square of the unit
interval has a strong reflective hull which is the subcategory of compact Hausdorff spaces. Similarly,
we prove that the subcategory of Top whose only object is the square of the real line is the subcategory
of realcompact spaces. Consequently, one recovers the Stone–Čech compactification and the Hewitt
realcompactification procedures.

Fibrewise topology is a branch of topology which studies the slice categories of Top. It plays an im-
portant role in homotopy theory as shown by Crabb and James in their book [10], and is now considered
as a subject in its own right. One of the main objectives of this paper is to extend some of the categorical
properties of certain subcategories of Top to their fibrewise counterparts.

It is a well known fact that the subcategories of Top of Fréchet spaces, Hausdorff spaces, Urysohn
spaces, completely Hausdorff spaces, weak Hausdorff spaces and k-Hausdorff spaces are reflective. Let
B be a topological space and let TopB be the category of fibrewise spaces over B. We use the theory
of Kan extendable subcategories to present a general theorem allowing one to recognize reflective sub-
categories of TopB. We then use it to prove, in a harmonized and systematic manner, that the fibrewise
versions of the above subcategories of Top are again reflective subcategories of TopB.

It is a classical result of Herrlich and Strecker that any subcategory W of Top containing a nonempty
space is, in our terminology, left Kan extendable ([18, Proposition 2.17], [20, Theorem 12] and [19, page
283]). Moreover, if the objects of W are exponentiable in Top and if W satisfies an additional condition,
then a celebrated theorem of Day asserts Wl[Top] is cartesian closed [11, Theorem 3.1]. In the most
famous application, one takes W to be the subcategory Comp of compact Hausdorff spaces to deduce
that the category of compactly generated spaces, which is the strong reflective hull of Comp, is cartesian
closed [11, Corollary 3.3]. Similarly, by taking W to be the subcategory of Top whose only object is
the one-point compactification of a discrete countable space, we deduce that the subcategory of Top of
sequential spaces is cartesian closed and, by taking W to be the subcategory of Top whose only object is
the Sierpinski space, one gets the fact that the subcategory of Alexandroff spaces is cartesian closed.

The category TopB is not cartesian closed. Lots of work with varying success has been done to provide
a convenient substitute for it. In [5, Theorem 2.2], Booth proves that the category of fibrewise quasi-
topological spaces, in which the category of fibrewise topological spaces embeds, is cartesian closed. In
a later work, Booth and Brown defined a partial map version of the compact-open topology and use it
to describe a fibrewise mapping-space satisfying certain exponential laws [4, Section 3]. Variants of the
Booth-Brown topology on the mapping space were used by James to show that an exponential law holds
in certain situations ([24, Proposition 5.6] and [25, Proposition 10.15]).

Let W be a left Kan extendable subcategory of C whose objects are exponentiable in C. We show that
under mild conditions, the subcategory Wl[C] of C is cartesian closed (Theorem 9.6).
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We here prove that a subcategory W of TopB , which is suitable in a specified sense, is left Kan ex-
tendable (Theorem 8.2). We then use Theorem 9.6 to derive a fibrewise version of Day’s theorem. As
application, we prove that the category of fibrewise compactly generated spaces is cartesian closed pro-
vided that the base B is T1 (Theorem 11.12); a result which is not proved neither in [5, 6, 4] nor in
[24, 25] and is new to author’s knowledge. Further applications include the cartesian closedness of
the category of fibrewise sequential spaces (Proposition 13.4) and that of fibrewise Alexandroff spaces
(Proposition 14.9), provided that the base B satisfies the right separation axiom.

The paper is structured as follows: Section 1 contains a brief discussion of reflective subcategories
and their properties that are being used throughout. In particular, the concept of strong reflective hull is
introduced and its connection with the ordinary reflective hull is investigated. In Section 2, we recall the
basic definitions and facts about codensity monads and their idempotency. These are used in Section 3
to define the notion of Kan extendable subcategories and study their properties. In Section 4, we use the
theory of Kan extendable subcategories to derive the Stone–Čech compactification and the Hewitt real-
compactification procedures. In Section 5, we prove that subcategories of fibrewise topological spaces
over B which satisfy certain separation axioms are reflective subcategories of TopB. In Section 6, we
investigate the concept of fibrewise compact spaces. We in particular prove that a fibrewise compact
fibrewise Hausdorff space over a T1 base B is an exponential object of TopB , a fact that is needed to give
one of the main applications of the paper. In Section 7, we introduce the subcategories of TopB of fibre-
wise weak Hausdorff spaces and fibrewise k-Hausdorff spaces and prove that they are reflective in TopB.
In Section 8, we present a sufficient condition for a subcategory of TopB to be left Kan extendable. In
Section 9, we state conditions that ensure the cartesian closedness of the strong coreflective hull of a sub-
category (Theorem 9.6). The fibrewise Day’s theorem is presented and proved in Section 10 (Theorem
10.2). It is then used in Sections 11 to prove that the category kTopB of fibrewise compactly generated
topological spaces over a T1 base B is cartesian closed. Properties of certain subcategories of kTopB
are inspected in Section 12. Sections 13 and 14 are devoted to the study of fibrewise sequential spaces
and fibrewise Alexandroff spaces respectively. In Appendix A, limits in a slice category are investigated.
Specializations of the results of Appendix A to either a slice category of sets or a category of fibrewise
topological spaces are given in appendices B and C.

Conventions and notations

Throughout this paper, the product of two categories A and B is denoted by A× B. A subcategory B
of a category C is always assumed to be full. Given two objects X,Y ∈ C, the set of morphisms from
X to Y is denoted by C(X,Y ). When it exists, the cartesian product of X and Y in C is denoted by
X ×C Y . If X and Y are in the subcategory B of C, then their cartesian product X ×B Y in B, when it
exists may be different from their product X ×C Y in the larger category C and should not be confused
with it. Given a family of objects (Xi)i∈I of C, when they exist, the product and coproduct over I of the

Xi’s are denoted by
i∈I∏
C
Xi and

i∈I∐
C
Xi respectively.

Throughout this paper, B denotes a fixed topological space. The slice category Top/B is called the
category of fibrewise topological spaces over B and denoted simply by TopB . (see Appendix C).
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1 Reflective subcategories

In this section, we briefly recall the notion of reflective subcategories and discuss some of their relevant
properties.

Definition 1.1. Let C be a category.

1. A subcategory C0 of C is said to be reflective if the inclusion functor C0 U
↪→ C is a right adjoint

functor. In this case, a left adjoint functor F of U is called a reflector and the adjoint pair (F � U)
is called a reflection of C on C0. The unit 1C

η
=⇒ UF and counit FU ε

=⇒ 1C0 of the adjunction
(F � U) are also called the unit and counit of the reflection (F � U) of C on C0.

2. Dually, a subcategory C0 of C is said to be coreflective if the inclusion functor C0 U
↪→ C is a left

adjoint functor. In this case, a right adjoint G of U is called a coreflector and the adjoint pair
(U � G) is called a coreflection of C on C0. The unit 1C0

η
=⇒ GU and counit UG ε

=⇒ 1C of the
adjunction (U � G) are also called the unit and counit of the coreflection (U � G) of C on C0.

Under the conditions of Definition 1.1.1, the objects of C0 are often identified with their images in C by
the inclusion functor U . In particular, the components of the unit η of the reflection (F � U) are viewed
as maps ηC : C −→ F (C) in C.

Lemma 1.2.

1. Let (F � U) be a reflection of C on C0 with unit 1C
η

=⇒ UF and counit FU ε
=⇒ 1C0. Then

(a) The natural transformation ε is an isomorphism.

(b) An object C ∈ C is isomorphic to an object in C0 iff the map ηC : C −→ F (C) is an
isomorphism.

2. Dually, let (U � G) be a coreflection of C on C0 with unit 1C
η

=⇒ GU and counit UG ε
=⇒ 1C0.

Then

(a) The natural transformation η is an isomorphism.

(b) An object C ∈ C is isomorphic to an object in C0 iff the map εC : G(C) −→ C is an
isomorphism.

Proof.

1. (a) The functor U : C0 ↪→ C is fully faithful, therefore by [32, Theorem 1 page 90], the counit
FU

ε
=⇒ 1C0 is an isomorphism.
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(b) If C ∈ C is such that ηC : C −→ F (C) is an isomorphism, then obviously, C is isomor-

phic to the object F (C) of C0. Conversely, assume that there is an isomorphism C0
f−→ C ,

where C0 ∈ C0. The counit FU ε
=⇒ 1C0 is an isomorphism, therefore UFU Uε

=⇒ U is an
isomorphism. By [32, Theorem 1 page 82] the composite

U
ηU
=⇒ UFU

Uε
=⇒ U

is the identity natural transformation. Therefore U
ηU
=⇒ UFU is an isomorphism. It follows

that ηC0 : C0 −→ F (C0) is an isomorphism. In the following commutative diagram

C0 F (C0)

C F (C)

ηC0

f F (f)

ηC

f , F (f) and ηC0 are isomorphisms. Therefore ηC is an isomorphism.

2. The second property is dual to the first.

Definition 1.3. Let B be a subcategory of a category C and C
f−→ C ′ a morphism in C. Then

1. f is said to be B-monic if given two maps α, β from an object B in B to C , then fα = fβ =⇒ α =

β.

2. Dually, f is said to be B-epic if given two maps α, β in C from C ′ to an object B in B, then
αf = βf =⇒ α = β.

Lemma 1.4.

1. Assume that (F � U) is a reflection of a category C on a subcategory C0 with unit 1C
η

=⇒ UF .
Then for every C ∈ C, the morphism C

ηC−→ F (C) is C0-epic.

2. Dually, assume that (U � G) is a coreflection of a category C on a subcategory C0 with counit
UG

ε
=⇒ 1C0. Then for every C ∈ C, the morphism G(C)

εC−→ C is C0-monic.

Proof.

1. LetC ∈ C andC0 ∈ C0. The map C0(F (C), C0)
C0(ηC ,C0)−−−−−→ C(C,C0) is bijective, therefore injective.

Thus ηC is C0-epic.

2. The second property is dual to the first.

Proposition 1.5. (Riehl, [36, Proposition 4.5.15])

1. Let C0 ↪→ C be a reflective subcategory, then
(a) The inclusion functor C0 ↪→ C creates all limits that C admits.

(b) The subcategory C0 has all colimits that C admits, formed by applying the reflector to the
colimit in C.
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In particular if C is either complete or cocomplete, then so is C0.
2. Let C0 ↪→ C be a coreflective subcategory, then

(a) The inclusion functor C0 ↪→ C creates all colimits that C admits.

(b) The subcategory C0 has all limits that C admits, formed by applying the coreflector to the limit
in C.

In particular if C is either complete or cocomplete, then so is C0.

The following result is a generalization of [21, Proposition 3].

Lemma 1.6. Let C0 be a subcategory of a category C which is either reflective or coreflective. Then the
retract in C of an object in C0 is isomorphic to an object of C0.

Proof. We only need to prove the property in the reflective case. Let

A
i−→ X

r−→ A

be a retraction in C of an object X ∈ C0. The diagram

A X Xi ir

1X
(1)

is an equalizer in C. For iri = i = 1Xi. Let f : Y −→ X be such that irf = f . Assume that
g : Y −→ A is such that ig = f .

Y

A X X

f
g=rf

i

ir

1X

Then ig = f = irf . The morphism i is monic, thus g = rf and g is unique. Now define g = rf ,
ig = irf = f . It follows that (1) is an equalizer. By Proposition 1.5.1.(a), A is isomorphic to an object
of C0.

Recall that a subcategory A of a category C is said to be replete if any object of C which is isomorphic
to an object of A is itself in A.

Definition 1.7. Let W be a subcategory of a category C.

1. A subcategory C0 of C is called the reflective hull of W in C if it is the smallest replete, reflective
subcategory of C containing W .

2. Dually, a subcategory C0 of C is called the coreflective hull of W in C if it is the smallest replete,
coreflective subcategory of C containing W .

A reflective (resp. coreflective) hull of a subcategory may not always exist, as is shown in [2], but if
it does, then it is unique. A subcategory W of a category C has a reflective (resp. coreflective) hull iff
the intersection of all reflective (resp. coreflective), replete subcategories of C containing W is again a
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reflective (resp. coreflective) subcategory of C. In which case, this intersection is precisely the reflective
(resp. coreflective) hull of W .

Let F : A −→ C be a functor. For C ∈ C, let F/C be standard comma category, DC : F/C −→ A be
the functor which takes an arrow-object F (A) σ−→ C to A and FC be the composite functor

F/C
DC−→ A F−→ C (2)

Recall that the functor F is said to be dense if for each C ∈ C, FC has a colimit and the natural map
colimFC −→ C is an isomorphism. If A is a subcategory of C and J : A −→ C is the inclusion functor,
then for C ∈ C, the comma category J/C is also denoted by A/C . The functor JC is the composite

A/C DC−→ A J−→ C. (3)

The subcategory A of C is said to be dense in C if the functor J is dense. One has dual notions of codense
functor and codense subcategory.

Theorem 1.8. Let W be a subcategory of a category C.

1. Assume that C0 is a replete reflective subcategory of C in which W is codense. Then C0 is the
reflective hull of W in C.

2. Dually, assume that C0 is a replete coreflective subcategory of C in which W is dense. Then C0 is
the coreflective hull of W in C.

Proof. We prove the first property, the second one is the dual of the first. Let C′
0 be a replete reflective

subcategory of C containing W . Define C0 U0−→ C and C′
0

U ′
0−→ C to be the inclusion functors and let

X ∈ C0. Define X/W to be the subcategory of the under category X/C whose objects are arrows
X → V with V ∈ W . Let JX : X/W −→ C be the functor which takes an arrow-object X → V to its
codomain V . The functor JX takes values in W which is contained in C0 and C′

0, therefore JX factors
through C0 and C′

0 as shown in the following commutative diagram

C0

X/W C

C′
0

U0

J ′X
0

JX
0

JX

U ′
0

The subcategory W is codense in C0, thus limJX
0 = X . Being a right adjoint, U0 preserves limits. Thus

JX = U0J
X
0 has a limit and limJX = X . We have JX = U ′

0J
′X
0 and C′

0 be a replete. By Proposition
1.5.1.(a), J ′X

0 has a limit, X ∈ C′
0 and limJ ′X

0 = X . It follows that C0 is a subcategory of C′
0. Therefore

C0 is the reflective hull of W in C.

Recall that subcategories are always assumed to be full.
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Remark 1.9. Given a subcategory W of C. Theorem 1.8 shows that:

1. There is at most one replete reflective subcategory of C in which W is codense. When it exists, it is
certainly the reflective hull of W , and is called the strong reflective hull of W in C.

2. Dually, there is at most one replete coreflective subcategory of C in which W is dense. When it
exists, it is certainly the coreflective hull of W , and is called the strong coreflective hull of W in C.

Corollary 1.10. Given a subcategory W of C.

1. The subcategory W has a strong reflective hull iff it has a reflective hull in which it is codense.

2. Dually, W has a strong coreflective hull iff it has a coreflective hull in which it is dense.

Proof. This is a consequence of Theorem 1.8.

We next give an example of a subcategory which has a coreflective hull but has no strong coreflective
hull.

Example 1.11. Let Vect be the category of Z/2Z-vector spaces and Z the subcategory of Vect con-
taining Z/2Z as its unique object. Let C be a replete coreflective subcategory of Vect containing Z . By
Proposition 1.5.2.(a), C contains Z/2Z⊕Z/2Z. By [32, page 247 Exercise 1], Z/2Z⊕Z/2Z is dense in
Vect. Thus by Proposition 1.5.2.(a), C = Vect. It follows that Vect is the unique coreflective subcategory
of Vect containing Z and it is consequently its coreflective hull. Let A = Z/2Z ⊕ Z/2Z ∈ Vect and
let JA : Z/A −→ Vect be the functor which takes an arrow-object Z/2Z −→ A in Z/A to its domain
Z/2Z. Clearly, colimJA ∼= Z/2Z⊕Z/2Z⊕Z/2Z. It follows that the subcategory Z of Vect is not dense
in Vect. By Corollary 1.10.2, Z has no strong coreflective hull.

We close this section with the following observation.

Remark 1.12. Let C be a cartesian closed category with internal hom functor

(.)(.) : Cop × C −→ C
(Y, Z) �−→ ZY

Let C0 be a reflective subcategory of C and assume that for every Y, Z ∈ C0, the power object ZY ∈ C0.
Then:

1. By Proposition 1.5.1.(a), for every X,Y ∈ C0, X ×C0 Y exists and is isomorphic to the product
X ×C Y of X and Y in C.

2. The category C0 is cartesian closed with internal hom functor induced by that of C.

2 Idempotent codensity monads

Here, we recall the concepts of monads, codensity monads and their algebras. Details may be found in
[32, Ch. VI], [36, Ch. 5], [7, Ch. 4], [13, page 67] and [9, Section 2]. These notions are needed to define
the main concept of this paper, which that of Kan extendable subcategories.
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Let C be a category.

• The category CC of endofunctors of C is a monoidal category with composition of functors as its
monoidal product.

• A monad on C is an unital associative monoid in CC. It consists then of a triple (T, η, μ), where
T : C −→ C is a functor, μ : T 2 −→ T is an associative multiplication with unit η : 1C −→ T .

Let (T, η, μ) be a monad on the category C.

• The monad (T, η, μ) is said to be idempotent if the multiplication μ : T 2 −→ T is an isomorphism.

• An algebra over T is a pair (A, u) consisting of an object A ∈ C and a morphism u : TA −→ A

rendering commutative the diagrams:

T 2A TA

TA A

Tu

μA u

u

A TA

A

ηA

1A
u

• Given two T -algebras (A, u) and (B, v). A morphism of T -algebras from A to B is an arrow
f : A −→ B rendering commutative the diagram

TA TB

A B

Tf

u v

f

• Algebras over T and their morphisms form a category denoted by CT . It admits a forgetful functor
U : CT −→ C which is right adjoint to the free T -algebras functor F : C −→ CT .

Proposition 2.1. (Borceaux, [7, Proposition 4.1.4])

Let (T, η, μ) be a monad on a category C. Let U : CT −→ C be the forgetful functor and F : C −→ CT

the free T -algebras functor. Then (F � U) is an adjunction with unit the unit η : 1C −→ T = UF of the
monad T .

In order to recall the notion of idempotent monad, we state the following result which is part of [29,
Proposition 7.2] of Kelly and Lack.

Proposition 2.2. Let (T, η, μ) be a monad on a category C. Then the following properties are equivalent:

1. The monad T is idempotent.

2. The natural transformation ηT : T −→ T 2 is an isomorphism.

3. The natural transformation Tη : T −→ T 2 is an isomorphism.
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4. The functors μ and ηT are mutually inverse.

5. The functors μ and Tη are mutually inverse.

6. The functors ηT and Tη are equal.

7. For each object A of C, a map u : TA −→ A defines an algebra structure on A iff it is inverse to
ηA.

8. The forgetful functor U : CT −→ C is full.

9. The forgetful functor U : CT −→ C is full and faithful.

Proposition 2.3. Let (T, η, μ) be an idempotent monad on a category C and letA be an object of C. Then
the following three conditions are equivalent:

1. The object A of C has a T -algebra structure.

2. The unit map ηA : A −→ TA is an isomorphism.

3. The object A of C is isomorphic to a certain T -algebra.

In particular, CT is a replete subcategory of C.

Proof.

• 1 ⇐⇒ 2 : The monad T is idempotent. Therefore by Proposition 2.2.7, an object A of C has a
T -algebra structure iff ηA : A −→ TA is an isomorphism.

• 2 =⇒ 3 : If ηA : A −→ TA is an isomorphism, then the object A of C is isomorphic to the free
algebra TA.

• 3 =⇒ 2 : Assume that f : A −→ B is an isomorphism, where B is a T -algebra. In the following
commutative diagram

A B

TA TB

f

ηA ηB

Tf

The maps f , Tf and ηB are isomorphisms, therefore ηA is an isomorphism. It follows that A is a
T -algebra.

• The monad T is idempotent. By Proposition 2.2.9, the forgetful functor U : CT −→ C is fully
faithful. By Proposition 2.2.7, any object of C admits at most one algebra structure. Therefore U
is injective on objects. The category CT may then be identified to a subcategory of C. The fact that
CT is a replete follows from the fact that properties 1. and 3. are equivalent.
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Let G : A −→ B be a functor and assume that G has a pointwise right Kan extension R along itself
with counit ε : RG −→ G. Then one has a diagram

A B

B
G

G

R

1B

η
ε

where η : 1B −→ R is the unique natural transformation rendering commutative the diagram

G G

RG

1G

ηG ε
(4)

Let B ∈ B, DB : B/G −→ A be the functor which takes an arrow-object B σ→ G(A) to A and GB be
the composite functor

B/G
DB−→ A G−→ B. (5)

Then by [32, Theorem 1 page 237],

R(B) = limGB. (6)

By [32, (6), page 238], the unit

ηB : B −→ R(B) (7)

is the map induced by the cone

B
λB

=⇒ GB (8)

whose component λBσ along an arrow-object B σ→ G(A) is the map σ : B −→ G(A). By the universal
property of (R, ε), there exists a unique natural transformation μ : R2 −→ R rendering commutative the
diagram

R2G RG

RG G

Rε

μG ε

ε

Then the triple (R, η, μ) is a monad called the codensity monad of the functor G.

Assume that a functor G : A −→ B has an idempotent codensity monad (R, η, μ). Then as explained in
the proof of the final statement of Proposition 2.3, the forgetful functor U : BR −→ B is fully faithful
and injective on objects. The category BR is then identified to its image by U , which is, by Proposition
2.3, a replete subcategory of C.
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Examples 2.4.

1. The unit of a monoidal category is a unital associative monoid.

2. Let B be a category. The trivial monod IB on B is the unit of the monoidal category of endofunctors
BB. It is the identity functor 1B with the identity natural transformation of 1B as its unit and its
multiplication, and it is idempotent. The trivial comonad on B is dually defined.

3. Clearly, a functor G : A −→ B is codense iff the trivial monad IB is a codensity monad of G [32,
Proposition 1 page 246].

Theorem 2.5. Let G : A −→ B be a fully faithful functor which has an idempotent codensity monad
(R, η, μ). Then

1. The functor G takes values in the subcategory of R-algebras. That is, G(A) ⊂ BR.

2. The functor G0 : A −→ BR induced by G is a codense functor.

Proof. Let ε : RG −→ G be the counit of the pointwise right Kan extension R of G along itself.

A B

B
G

G

R

1B

η
ε

1. The functor G is fully faithful. By [32, Corollary 3, page 239], ε is an isomorphism. Let A ∈ A,
by (4), the composite

G(A)
ηG(A)−−−→ RG(A)

εA−→ G(A)

is 1G(A). It follows that ηG(A) is an isomorphism. By Proposition 2.3, G(A) ∈ BR.

2. Let B be an R-algebra and G0 : A −→ BR be the functor induced by G. Let

GB : B/G −→ B and GB
0 : B/G0 −→ BR

be as defined by (5). Moreover, let

B
λB

=⇒ GB and B
λB
0=⇒ GB

0

be as defined by (8). As explained above, limGB = R(B) and the map B −→ limGB induced
by the cone λB is just the unit ηB : B −→ R(B), which is an isomorphism by Proposition 2.3. It
follows that λB is a limiting cone.

The category B/G0 is isomorphic to B/G and may be identified with it. The functor GB factors
through GB

0 as follows

B/G0 = B/G

BR B

GB
0 GB

U
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By Proposition 1.5.1.(a), the functor U creates limits. In particular, any cone setting above a limit
cone is itself a limit cone (see [36, page 90] ). We have U(λB0 ) = λB. Thus the cone λB0 is a
limiting cone. It follows that G0 is a codense functor.

The notions of comonads, idempotent comonads, coalgebras over them and density comonads are
dually defined and satisfy the appropriate dual properties.

3 Left and right Kan extendable subcategories and their properties

In this section, we introduce the key notion of left Kan extendable subcategories and investigate some
of its properties. We conclude the section by briefly introducing the dual notion of right Kan extendable
subcategories.

Definition 3.1. 1 A subcategory W of a category C is said to be left Kan extendable provided that:

1. The inclusion functor J : W −→ C has a density comonad (L, ε, δ).

2. The comonad (L, ε, δ) is idempotent.

Let W be a left Kan extendable subcategory of C and let (L, ε, δ) be the idempotent density comonad
of the inclusion functor J : W −→ C. The category of L-coalgebras is denoted by Wl[C]. It is, by the
dual of Proposition 2.3, a replete subcategory of C and is called the subcategory of W-generated objects
of C.

Examples 3.2. We here give examples of left Kan extendable subcategories.

1. Let Ab be the category of abelian groups. The subcategory Fin of Ab of finite abelian groups is
left Kan extendable, Finl[Ab] is the subcategory Tor of torsion abelian groups [30, page 42]. The
functor Ab −→ Tor which takes an abelian group to its torsion subgroup is a coreflector.

2. Let P the subcategory of the category Top consisting of just one object which is the one point
topological space. The subcategory P is left Kan extendable in Top and Pl[Top] is the category Dis
of discrete topological spaces [8, page 18]. Furthermore, the discretization functor Top −→ Dis is
a coreflector.

3. The simplicial category Δ has objects [n] = {0, 1, ..., n}, n ≥ 0. A map in Δ is an order preserving
function α : [n] −→ [m]. Let S be the category of simplicial sets and let Δn ∈ S be the standard
n-simplex. Fix a non-negative integer n and let Wn be the (full) subcategory of S whose objects
are Δk, k ≤ n. Then Wn is left Kan extendable in S and Wn[S] is the subcategory Sn of S of
simplicial sets of dimension ≤ n. Furthermore, the left Kan extension of the inclusion functor
Wn −→ S along itself is just the functor n-skeleton functor Skn : S −→ S as defined in [26,
page 11].

1 The author is greatly grateful to Richard Garner for helping him introduce this final form of the definition of Kan extendability.
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Proposition 3.3. Let W be a left Kan extendable subcategory of C, (L, ε, δ) the density comonad of the
inclusion functor J : W −→ C and U : Wl[C] −→ C the forgetful functor. Then:

1. The subcategory Wl[C] is the strong coreflective hull of W in C.

2. The free L-coalgebra functor FL : C −→ Wl[C] is a coreflector.

3. The coreflection (U � FL) has ε as its counit.

Proof. This follows from the duals of Propositions 2.1, 2.2, 2.3 and the dual of Theorem 2.5.

Proposition 3.4. Let W be a left Kan extendable subcategory of C.

1. The inclusion functor Wl[C] U−→ C creates all colimits that C admits.

2. The subcategory Wl[C] has all limits that C admits formed by applying the coreflector FL to the
limit in C.

In particular, if C is either complete, cocomplete or bicomplete, then so is Wl[C].

Proof. This follows from Proposition 3.3 and Proposition 1.5.2.

Corollary 3.5. Let W be a left Kan extendable subcategory of C and C ∈ C. Then the following two
properties are equivalent:

1. The object C is W-generated.

2. There exists a functor F : K −→ W such that C ∼= colimJF , where J : W ↪→ C is the inclusion
functor.

Proof.

• 2 =⇒ 1 : This follows from Proposition 3.4.1.

• 1 =⇒ 2 : Let (L, ε, δ) be the density comonad of the inclusion functor J : W ↪→ C. Define
DC : W/C −→ W to be the functor which associates to an arrow-object V −→ C its domain V
and let JC be the composite functor

JC : W/C
DC−→ W J

↪→ C

Then, L(C) ∼= colimJC . By the dual of Proposition 2.3, εC : L(C) −→ C is an isomorphism. Therefore
C ∼= colimJC .

The next result presents a criteria for the existence of a strong reflective hull of a subcategory.
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Theorem 3.6. Let W be a subcategory of a category C and J : W −→ C the inclusion functor. The
following two properties are equivalent:

1. The subcategory W of C is left Kan extendable.

2. The subcategory W of C has a strong coreflective hull.

3. The functor J has a density comonad (L, ε, δ) and the morphism εC : L(C) −→ C is W-monic for
all C ∈ C.

When these conditions are satisfied, then Wl[C] is the strong coreflective hull of W .

Proof.

• 1 =⇒ 2: By Proposition 3.3.1, Wl[C] is the strong coreflective hull of W in C.

• 2 =⇒ 3: Let C0 be the strong coreflective hull of W in C, W J0−→ C0 the inclusion functor and
(U � G) a coreflection of C on C0. The subcategory W is dense in C0, thus J0 has a trivial density
comonad (dual of Example 2.4.3).

The functor 1C0 : C0 −→ C0 is a left pointwise Kan extension of J0 along itself. The functor G is a
right adjoint of U , thus by [36, Proposition 6.5.2], G is a left pointwise Kan extension of 1C0 along
U . Therefore G is a left pointwise Kan extension of J0 along J = UJ0. The functor U is a left
adjoint functor, therefore it preserves left pointwise Kan extensions. It follows that L = UG is a
density comonad of J .

W C0 C

C0

C

J

J

J0

J0

U

U

1C0
G

L

1C

ε

Let ε be the counit of the comonad L. By Proposition 3.3.3, ε : L = UG =⇒ 1C is the counit of
the coreflection (U,G). By Lemma 1.4.2, εC : L(C) −→ C is W-monic for all C ∈ C.

• 3 =⇒ 1: For C ∈ C, let W/C be the subcategory of the over category C/C whose objects are
arrows V −→ C with domain V ∈ W . Define DC : W/C −→ W to be the functor which
associates to an arrow-object V −→ C its domain V and let JC be the composite functor

JC : W/C
DC−−→ W J−→ C
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The functor J has a density comonad (L, ε, δ). Therefore by the dual of [32, Theorem 3 page 244],

∀C ∈ C, colimJC exists and L(C) = colimJC .

A morphism C
f−→ C ′ in C induces a functor W/C

W/f−−−→ W/C ′ rendering commutative the
diagram

W/C
W/f ��

JC ���
��

��
��

��
W/C ′

JC′����
��
��
��
�

C
This last diagram induces a map

colimJC −→ colimJC′

which is just
L(f) : L(C) −→ L(C ′).

Let η : J =⇒ LJ be the unit of the left Kan extension L of J along itself. The functor J is fully
faithful. By the dual of [32, Corollary 3 page 239], η is an isomorphism. We may therefore assume
that

L(V ) = V and ηV = 1V : V −→ V, for all V ∈ W .

In which case, by the commutativity of the diagram which is dual to (4),

εV = 1V : V −→ V, for all V ∈ W .

Therefore by the naturality of ε, for each C ∈ C and each arrow-object σ : V −→ C in W/C , there
exists a map σ̃ : V −→ L(C) rendering commutative the diagram

V

L(C) C

σ∃!σ̃

εC

Moreover, σ̃ is unique since εC is W-monic. It follows that the functor

W/L(C)
W/εC−−−→ W/C

is an isomorphism. The following diagram commutes

W/L(C)
W/εC ��

JL(C) ���
��

��
���

��
W/C

JC����
��
��
��
�

C
Therefore the map L(εC) : L2(C) −→ L(C) is an isomorphism. By the dual of Proposition 2.2, L
is an idempotent comonad and W is left Kan extendable in C.

Example 3.7. The subcategory Z of Vect of Example 1.11 has no strong coreflective hull. By Theorem
3.6, Z is not left Kan extendable.
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Corollary 3.8. Let W be a left Kan extendable subcategory of a category C and assume that C0 is a
replete coreflective subcategory of C containing W . Then W is left Kan extendable as a subcategory C0.
Furthermore, Wl[C0] = Wl[C].

Proof. By Theorem 3.6, Wl[C] is the coreflective hull of W . The subcategory C0 is a replete, coreflective
subcategory of C containing W , thus Wl[C] is a subcategory of C0, which is replete coreflective as a
subcategory of C0, in which W is dense. By Theorem 1.8.2, Wl[C] is the strong coreflective hull of W in
C0. By Theorem 3.6, W is left Kan extendable in C0 and Wl[C0] = Wl[C].
Corollary 3.9. Let W , W ′ be left Kan extendable subcategories of C.

1. If W ′ ⊂ Wl[C], then W ′
l [C] is a coreflective subcategory of Wl[C].

2. If W ′ ⊂ Wl[C] and W ⊂ W ′
l [C], then Wl[C] = W ′

l [C].

Proof.

1. By Corollary 3.8, W ′ is left Kan extendable as a subcategory of Wl[C] and W ′
l [Wl[C]] = W ′

l [C].
By Proposition 3.3, W ′

l [C] is a coreflective subcategory of Wl[C].
2. This follows from 1.

Theorem 3.10. Let C0 be a reflective subcategory of C, W a left Kan extendable subcategory of C con-
tained in C0 and (U � FL) the coreflection of C on Wl[C] given by Proposition 3.3. Assume further that
FL(C0) ⊂ C0. Then:

1. The subcategory W is left Kan extendable as a subcategory of C0.
2. A reflection of C on C0 induces a reflection of Wl[C] on Wl[C0].
3. We have Wl[C0] = C0 ∩Wl[C].
4. The coreflection (U � FL) of C on Wl[C] induces a coreflection of C0 on Wl[C0].

Proof. Let J : W −→ C, J0 : W −→ C0 be the inclusion functors and (F � V ) a reflection of C on C0.
We may, by Lemma 1.2.1, assume that the composite C0 V−→ C F−→ C0 is the identity 1C0 functor. We
then have FJ = J0.

1. Let (L, ε, δ) be a density comonad of J . The subcategory C0 of C contains W , thus J has a pointwise
left Kan extension along J0 : W −→ C0 which is L/C0. The functor F is left adjoint, it is then
cocontinuous and therefore preserves left pointwise Kan extensions. Thus J0 = FJ has a pointwise
left Kan extension along itself which is L0 = FL/C0. We have L/C0(C0) = L(C0) = FL(C0) ⊂ C0
and F/C0 = 1C0, therefore L induces an endofunctor of C0 which is simply the functor L0. Let
ε0 : L0 −→ 1C0 be the natural transformation induced by ε. Clearly, ε0 is the counit of the density
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comonad L0. By Theorem 3.6, ε is W-monic, hence ε0 is W-monic. Again, by Theorem 3.6, W is
left Kan extendable as a subcategory of C0.

W C

C

J

J

L

1C

ε

W C C0

C0

J0

J

J0

F

L/C0 L0

1C0

ε0

2. We just need to prove that Wl[C0] ⊂ Wl[C] and F (Wl[C]) ⊂ Wl[C0]. Let X0 ∈ Wl[C0]. By the dual
of Proposition 2.3, εX0 = (ε0)X0 is an isomorphism, therefore X0 ∈ Wl[C] and Wl[C0] ⊂ Wl[C].
Let X ∈ Wl[C] and JX : W/X −→ C be the functor which takes an arrow-object V → X in
W/X to its domain V . The functor F preserves colimits, thus colimFJX ∼= F (X). The functor
FJX takes values in W , by Corollary 3.5, colimFJX ∈ Wl[C0]. It follows that F (X) ∈ Wl[C0] and
F (Wl[C]) ⊂ Wl[C0].

3. We have Wl[C0] ⊂ Wl[C], thus Wl[C0] ⊂ C0 ∩ Wl[C]. The induced functor F/C0 = 1C0, thus
C0 ∩Wl[C] = F (C0 ∩Wl[C]) ⊂ F (Wl[C]) ⊂ Wl[C0]. Therefore Wl[C0] = C0 ∩Wl[C].

4. One has FL(C0) ⊂ C0 ∩Wl[C] = Wl[C0]. Thus FL(C0) ⊂ Wl[C0] and the result follows.

We next introduce the dual notion of right Kan extendable subcategories.

Definition 3.11. A subcategory W of a category C is said to be right Kan extendable provided that:

1. The inclusion functor J : W −→ C has a codensity monad (R, η, μ).

2. The monad (R, η, μ) is idempotent.

Examples of right Kan extendable subcategories are given in the next section.

Let W be a right Kan extendable subcategory of a category C and (R, η, μ) the codensity monad of the
inclusion functor J : W −→ C. Define Wr[C] to be the category of R-algebras. Then by proposition
2.3, Wr[C] may be viewed as a replete subcategory of C. It is called the subcategory of W-cogenerated
objects of C.

Corollary 3.12. Let W be a right Kan extendable subcategory of C, (R, η, μ) the codensity monad of the
inclusion functor J : W −→ C and U : Wr[C] −→ C the forgetful functor. Then

1. The subcategory Wr[C] is the strong reflective hull of W in C.

2. The free R-algebra functor FR : C −→ Wr[C] is a reflector.

3. The reflection (FR � U) has η as its unit.

Proof. This is the dual of Proposition 3.3.
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4 Compactifications

Stone–Čech compactification and Hewitt realcompactification are procedures exhibiting the subcate-
gories of compact Hausdorff and realcompact spaces as reflective subcategories of Top. Our objective
in this section is to show how can these two facts be established using the notion of Kan extendable
subcategories. We begin with the following technical result.

Lemma 4.1. Let C be a complete category, C0 is a subcategory of C and J : C0 −→ C the inclusion
functor. Assume that for any small category I and any functor F : I −→ C0, the limit of the composite
functor JF is in C0. Then:

1. The subcategory C0 is complete.

2. The functor J : C0 −→ C preserves and creates small limits.

Observe that such a subcategory C0 is necessarily replete.

Proof. Clear.

Theorem 4.2. Let C be a complete category, W a small subcategory of C, C0 a subcategory of C contain-
ing W as a codense subcategory and J0 : C0 −→ C the inclusion functor. Assume further that for any
small category I and any functor F : I −→ C0, the limit of the composite functor J0F is in C0. Then C0
is the strong reflective hull of W .

Proof. The category C is complete and W is small, therefore the inclusion functor J : W −→ C has a
codensity monad (R, η, μ). By hypothesis, R(C) ⊆ C0. Moreover, the subcategory W is codense in C0.
Therefore by lemma 4.1, for each X ∈ C,

the morphism ηX : X −→ R(X) is an isomorphism iff X ∈ C0. (9)

As observed above, the functorR takes C into C0. Therefore by (9), ηR : R −→ R2 is an isomorphism.
By Proposition 2.2, R is an idempotent monad. It follows that W is right Kan extendable.

By Proposition 2.3, and object X ∈ C has an R-algebra structure iff ηX : X −→ R(X) is an isomor-
phism. Therefore by (9), Wr[C] = C0. By the dual of Theorem 3.6, C0 is the strong reflective hull of
W .

As before, let Comp be the subcategory of Top of compact Hausdorff spaces and let I the unit interval,
I2 = I ×Top I and Square the subcategory of Top having I2 as its unique object. The following result
strengthens the standard Stone–Čech compactification

Corollary 4.3. The subcategory Comp of Top is the strong reflective hull of Square.

Proof. Let J : Comp −→ Top be the inclusion functor, I be a small category and F : I −→ Comp

a functor. The limit of JF is clearly in Comp. By (Isbell, [22, Theorem 2.6]), Square is a codense
subcategory of Comp. By Theorem 4.2, Comp is the strong reflective hull of Square.
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Remark 4.4. An algebraic example of a coreflective hull which is not strong is given in Example 1.11.
We next provide another example which is topological.

Let U be the subcategory of Top having the unit interval I as its unique object. The subcategory Comp

of Top is reflective and contains U. Let top be a reflective subcategory of Top containing U. Clearly, top
contains Square, therefore it contains the reflective hull of Square which is Comp. It follows that Comp

is precisely the reflective hull of U. By [22, Theorem 2.6], U is not dense in Comp. Therefore U has no
strong reflective hull.

Let Rng be the category of commutative rings and let

C : Topop −→ Rng

be the functor which takes a space X to the ring of real-valued continuous maps defined on X . Recall
that a topological space is said to be realcompact if it is homeomorphic to a closed subspace of a product
of real lines [16, 11.12]. Let Rcomp be the subcategory of Top of realcompact spaces.

Theorem 4.5. ([16, Theorem 10.6])

The restriction functor C/ : Rcompop −→ Rng of C is fully faithful.

Let P be the subcategory of Rcomp having precisely one object which is R2 = R×Top R.

Theorem 4.6. The subcategory P of Rcomp is codense.

Proof. The proof is based on Theorem 4.5, and is strictly similar to Isbell’s proof of the fact that Square
is codense in Comp [22, Theorem 2.6].

The following result strengthens the standard Hewitt Realcompactification.

Corollary 4.7. The subcategory Rcomp of Top is the strong reflective hull of P.

Proof. Top is complete and Rcomp is a subcategory Top containing P as a codense subcategory. The
product in Top of a small set of realcompact spaces is realcompact. Similarly, the equalizer in Top of two
parallel maps in Rcomp is again in Rcomp. Therefore by Theorem 4.2, Rcomp is the strong reflective
hull of P.

5 Reflective subcategories of TopB

In this section, we apply the theory developed previously to prove that subcategories of fibrewise
topological spaces over B satisfying certain separation axioms are reflective subcategories of TopB.

Recall that a subcategory A of a category C is said to be closed under subobjects if whenever we have a
monomorphism X −→ Y in C with codomain Y ∈ A, then X is isomorphic to an object of A. Observe
that the next theorem may also be derived from [1, Theorem 16.8].
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Theorem 5.1. Let topB be a subcategory of TopB such that:

1. topB is replete and contains the fibrewise topological space B (over itself).

2. topB is closed under subobjects as a subcategory of TopB .

3. For every family (Vi)i∈I of objects of topB (indexed by a small set I), the product
i∈I∏
TopB

Vi is an object

of topB .

Then topB is a reflective subcategory of TopB. In particular, topB is bicomplete. Furthermore, the unit
η of this reflection is such that the maps ηX : X → R(X) are quotient maps, where R : TopB −→ topB
is a reflector.

Proof. Let X ∈ TopB and let JX : X/topB −→ TopB be the functor which takes an arrow-object
X −→ V to its codomain V . Define RX to be the equivalence relation on X given by x1RXx2 iff
f(x1) = f(x2) for every continuous fibrewise map f from X to any fibrewise topological space in topB.
The projection pX : X −→ B defines a continuous fibrewise map from X to B as follows:

X B

B

pX

pX

1B

Therefore if x1RXx2, then pX(x1) = pX(x2). It follows that the projection pX factors through X/RX

as follows:
X X/RX

B

pX

ηX

p̃X

In other words, RX is a fibrewise equivalence relation on X , thus X/RX is a fibrewise topological
space over B and the quotient map ηX : X −→ X/RX is a fibrewise map. Define AX = {{x1, x2} ⊂
X| pX(x1) = pX(x2) and x1��RXx2} and let (fi)i∈I be a family of maps in TopB such that:

• fi : X −→ Vi, where Vi ∈ topB for all i ∈ I .

• I is small and nonempty.

• For each {x1, x2} ∈ AX , there exists i ∈ I such that fi(x1) �= fi(x2).

Define f : X −→
i∈I∏
TopB

Vi to be the map whose i-component is fi. Observe that f(x1) = f(x2) ⇔

x1RXx2. Thus there exists a unique continuous fibrewise map f̃ : X/RX −→
i∈I∏
TopB

Vi rendering com-

mutative the diagram
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X
i∈I∏
TopB

Vi

X/RX

f

ηX

f̃

i∈I∏
TopB

Vi ∈ topB , f̃ is monic and topB is closed under subobjects. Therefore X/RX ∈ topB and the arrow

X
ηX−→ X/RX is an object of X/topB which is initial. Then clearly, lim JX ∼= X/RX ∈ topB exists. It

follows that the inclusion functor top J−→ TopB has a codensity monad R given by R(X) ∼= X/RX ∈
topB , with unit the natural transformation η : 1Top =⇒ R whose component along X is the quotient map
X

ηX−→ X/RX which is epic. By the dual of Theorem 3.6, topB is right Kan extendable in TopB . The
codensity monad R of the inclusion functor J : topB −→ TopB takes values in topB which is replete.
By Proposition 2.3, topB[TopB] ⊂ topB . If X ∈ topB, then RX is the trivial equivalence relation
and ηX = 1X . Therefore by Proposition 2.3.3, X ∈ topB[TopB] and topB ⊂ topB[TopB]. It follows
that topB[TopB] = topB . By Corollary 3.12, topB is a reflective subcategory of TopB with reflector
FR : TopB −→ topB the functor induced by R. Furthermore, the reflection of TopB on topB has unit η
which is an objectwise quotient map.

Examples 5.2. According to James [25, Chapter I, section 2], a fibrewise topological space X is said to
be fibrewise

• Fréchet (or T1) if each fibreXb ofX is an ordinary T1-topological space. The category of fibrewise
Fréchet spaces is denoted by fTopB .

• Hausdorff (or T2) if any two distinct points of X laying in the same fibre can be separated by
neighborhoods in X . The category of fibrewise Hausdorff spaces is denoted by hTopB .

Observe that if X is a fibrewise Ti-space over B, i = 1, 2 and B is an ordinary Ti-space, then X is a
Ti-space in the ordinary sense.

Similarly, define a fibrewise topological space X to be fibrewise

• Urysohn space (or T2
1
2) if any two distinct points of X laying in the same fibre can be separated

by closed neighborhoods in X . The category of fibrewise Urysohn spaces is denoted by uTopB.

• completely Hausdorff space (or functionally Hausdorff space) if any two distinct points ofX laying
in the same fibre can be separated by a continuous function (or equivalently, by a continuous
fibrewise map into B ×Top R). The category of fibrewise completely Hausdorff spaces is denoted
by hcTopB .

By Theorem 5.1, the categories fTopB , hTopB, uTopB and hcTopB are reflective subcategories of TopB .

A one point space pt is a terminal object of Top. Therefore one has the standard isomorphism

P : Toppt −→ Top. (10)

By substituting pt for B, Theorem 5.1 reduces to the following.
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Corollary 5.3. Let top be a subcategory of Top such that:

1. top is replete and contains a nonempty space.

2. top is closed under subobjects as a subcategory of Top.

3. For every family (Vi)i∈I of objects of top (indexed by a small set I), the product
i∈I∏
Top

Vi is an object

of top.

Then top is a reflective subcategory of Top. In particular, top is bicomplete. Furthermore, the unit
η of this reflection is such that the map ηX : X −→ R(X), X ∈ Top, is a quotient map, where
R : Top −→ top is the reflector.

Examples 5.4. A space X ∈ Top is Fréchet (resp. Hausdorff, Urysohn, completely Hausdorff) if it cor-
responds, under the isomorphism P of (10), to a fibrewise Fréchet (resp. Hausdorff, Urysohn, completely
Hausdorff) space over pt. The subcategory of Top of such spaces is reflective and is denoted by fTop

(resp. hTop, uTop, hcTop).

6 Fibrewise compact spaces

Let W be a left Kan extendable subcategory of a category C. One of the main objectives of this paper
is to present sufficient conditions, under which, the category Wl[C] is cartesian closed. Among other
conditions, one requires that the objects of W be exponentiable as objects of the category C. To be able
to apply this result to prove that the category of fibrewise compactly generated spaces over a T1-base B
is cartesian closed, one then needs to prove that a fibrewise compact fibrewise Hausdorff space over B is
an exponentiable object of TopB . This last result is precisely what this section is after.

We begin by introducing the notion of fibrewise compact spaces and recalling their relevant properties.
The main references of what is discussed here are the books of Bourbaki [8, Chapter I, Section 10] and
James [25, Chapter I].

Recall that a continuous map f : X −→ Y between two topological spaces X and Y is said to be
proper if the product map f ×Top 1Z : X ×Top Z −→ Y ×Top Z is closed for all Z ∈ Top [8, Section
10.1]. A fibrewise space X over the fixed topological space B is said to be fibrewise compact if its
projection p : X −→ B is a proper map.

The next proposition is an immediate consequence of [8, Proposition 5.b, Section 10.1].

Proposition 6.1. A continuous map Let f : X −→ Y and g : Y −→ Z be continuous maps. If g ◦ f is
proper, then the map f(X) −→ Z induced by g is proper.

The next theorem presents a criteria for a continuous map to be proper.

Theorem 6.2. [8, Theorem 1, Section 10.2]

A continuous map f : X −→ Y is proper iff f is closed and f−1(y) is compact for all y ∈ Y .
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Proposition 6.3. Let f : X −→ Y and f ′ : X ′ −→ Y ′ be two continuous fibrewise maps over B.
Assume that f and f ′ are proper. Then the map

f ×TopB f
′ : X ×TopB X

′ −→ Y ×TopB Y
′

is proper.

Proof. The maps f and f ′ are proper. By [8, Proposition 4, Section 10.1], the product map f ×Top f
′ :

X ×Top X
′ −→ Y ×Top Y

′ is proper. The commutative diagram

X ×TopB X
′ X ×Top X

′

Y ×TopB Y
′ Y ×Top Y

′
f×TopB

f ′ f×Topf
′

is a pullback diagram in Top. By [8, Proposition 3, Section 10.1], the map

f ×TopB f
′ : X ×TopB X

′ −→ Y ×TopB Y
′

is proper.

Corollary 6.4. Let X and Y be two fibrewise compact spaces over B. Then X ×TopB Y fibrewise
compact.

Proposition 6.5. [25, Proposition 2.7]

A fibrewise space X is fibrewise Hausdorff iff its diagonal ΔX is closed in X ×TopB X .

Definition 6.6. [25, Definition 2.15]

A fibrewise topological space p : X −→ B is fibrewise regular if for each point x0 ∈ X , and for each
open neighborhood V of x0 in X , there exist an open neighborhood Ω of b0 = p(x0) in B and an open
neighborhood U of x0 in X such that U ∩XΩ ⊂ V .

Proposition 6.7. [25, Proposition 3.19] Let φ : K −→ X be a continuous fibrewise map, where K is
fibrewise compact and X is fibrewise Hausdorff over B. Then φ is a proper map. In particular,

1. φ(K) is closed in X .

2. φ(K) is fibrewise compact fibrewise Hausdorff over B.

Corollary 6.8. [25, Corollary 3.20] A fibrewise compact subspace of a fibrewise Hausdorff space is
closed.

Corollary 6.9. A subspace of a fibrewise compact fibrewise Hausdorff space is fibrewise compact iff it is
closed.

Proof. The result follows from Corollary 6.8 and Theorem 6.2.

Proposition 6.10. ([8, Proposition 6 page 104]) Let p : X −→ B be a proper map and let K be a
compact subspace of B, then p−1(K) is a compact subspace of X .
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Proposition 6.11. [25, Proposition 3.22] Every fibrewise compact, fibrewise Hausdorff space over B is
fibrewise regular.

The next result reduces to the standard tube lemma [33, Lemma 26.8] in the case where B is a one
point space.

Lemma 6.12. (A fibrewise tube lemma)

Let X and K be two fibrewise spaces over B with K fibrewise compact. Let x0 ∈ X , O an open subset
of X ×TopB K and assume that {x0} ×TopB K ⊂ O. Then there exists an open neighborhood V of x0 in
X such that V ×TopB K ⊂ O.

Proof.

• Case 1: X = B and x0 = b0 ∈ B.
Observe that B×TopB K = K, {b0}×TopB K = Kb0 and O is an open subset of K containing Kb0.
Define C be the closed subset of K given by C = K \O. The projection pK : K −→ B is a proper
map, it is therefore closed. It follows that pK(C) is closed and does not contain b0. Define V =

B \ pK(C). Then clearly, V is an open neighborhood of b0 and V ×TopB K = p−1
K (V ) = KV ⊂ O

as desired.

• Case 2: The general case.
Let pX : X −→ B be the projection of the fibrewise space X and let b0 = pX(x0). We have
{x0} ×TopB K = {x0} ×TopB Kb0 ⊂ O. For every y ∈ Kb0 , there exist open neighborhoods Uy of
x0 in X and Wy of y in K such that Uy ×TopB Wy ⊂ O. The family (Wy)y∈Kb0

is an open cover
of Kb0 which is compact. There exist y1, y2, . . . , yn ∈ Kb0 such that Kb0 ⊂ ⋃n

i=1Wyi . Define
U =

⋂n
i=1 Uyi and W =

⋃n
i=1Wyi. Then U is an open neighborhood of x0, W is an open subset of

K containing Kb0 and U ×TopB W ⊂ O. By Case 1, there exists an open subset Ω of B such that
KΩ ⊂ W . Define V = XΩ ∩ U , then

V ×TopB K = U ×TopB KΩ ⊂ U ×TopB W ⊂ O.

We next present a special case of the fibrewise compact-open topology defined in [25, page 64], (see
also [34, page 152]).

Let K,Y ∈ TopB with K fibrewise compact, fibrewise Hausdorff space. A subspace of K (or Y ) may
be viewed as a fibrewise space over B. For Ω open in B, C closed in K and O open in Y , let

(C,O,Ω) =
b∈Ω∐
Set

{γ ∈ Top(Kb, Yb) | γ(Cb) ⊂ Ob}. (11)

Define mapB(K,Y ) to be the topological space whose underlying set is
b∈B∐
Set

Top(Kb, Yb) and whose

topology is generated 2 by the subsets (C,O,Ω), where Ω is open in B, C is closed in K and O is open
in Y .

2 The topology of mapB(K,Y ) is then the coarsest topology on the set
b∈B∐
Set

Top(Kb, Yb) containing (C,O,Ω)’s as open subsets.
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Our definition agrees with that of James mentioned above with the difference that in our case, mapB(K,Y )

is only defined when K is fibrewise compact, while in [25], mapB(X,Y ) is defined for any fibrewise
space X in precisely the same way.

Open subsets given by (11) are called elementary open subsets of mapB(K,Y ). For b ∈ B, let
map(Kb, Yb) be the subspace of mapB(K,Y ) whose underlying set is Top(Kb, Yb)

3. Define

pmap
B

(K,Y )
: mapB(K,Y ) −→ B (12)

to be the map whose fibre over b is map(Kb, Yb). Let Ω be open in B, then

p−1

map
B

(K,Y )
(Ω) =

b∈B∐
Set

Top(Kb, Yb) = (K,Y,Ω)

is open in mapB(K,Y ). It follows that pmap
B

(K,Y )
is continuous. The space mapB(K,Y ) is therefore

viewed as a fibrewise space over B.

Example 6.13. For b ∈ B, let Bb be the fibrewise subspace of B having b as its unique point. Then Bb is
fibrewise Hausdorff. Assume that B is T1. Then by Theorem 6.2, Bb is fibrewise compact. If Z ∈ TopB,
then mapB(B

b, Z) is a fibrewise space over B. It is such that

mapB(B
b, Z)b′ ∼=

{
Zb if b′ = b

One point space if b′ �= b
(13)

The next proposition is a special case of that of James [25, Corollary 9.13].

Proposition 6.14. Let K, Y be fibrewise topological spaces over B with K fibrewise compact fibrewise
Hausdorff. Then the evaluation map

ev : mapB(K,Y )×TopB K −→ Y

is continuous.

Proof. Let b0 ∈ B, γ0 ∈ map(Kb0, Yb0), x0 ∈ Kb0, O open in Y and suppose that γ0(x0) ∈ O. The
map γ0 : Kb0 −→ Yb0 is continuous, therefore there exists an open neighborhood V of x0 in K such that
γ0(V ∩Kb0) ⊂ O. The fibrewise space K fibrewise compact, fibrewise Hausdorff, by Definition 6.6, K
is regular. There exists an open neighborhood Ω of b0 ∈ B and an open neighborhood U of x0 in K such
that U ∩ KΩ ⊂ V . Define W = U ∩ KΩ. Then (U,O,Ω) ×TopB W is a neighborhood of (γ0, x0) ∈
mapTopB

(K,Y )×TopB K and ev((U,O,Ω)×TopB W ) ⊂ O. It follows that ev is continuous.

Recall that an object Y in a category C is said to be exponentiable if for each X ∈ C, the binary product
X ×C Y exists and the functor .×C Y : C −→ C has a right adjoint.

The following fact is a consequence of [25, Proposition 9.7 and Corollary 9.13] of James.

Theorem 6.15. Let K be a fibrewise compact fibrewise Hausdorff space over B. Then the functor

.×TopB K : TopB −→ TopB

3 Observe that if Kb is empty, then Top(Kb, Yb) contains precisely one element.
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has a right adjoint which is the functor

mapB(K, .) : TopB −→ TopB.

In particular, K is an exponentiable object of TopB.

Proof. Let X,Y ∈ TopB and f : X ×TopB K −→ Y a fibrewise function with adjoint (as a fibrewise
map between sets) the fibrewise function f̂ : X −→ mapB(K,Y ). We need to prove that f is continuous
iff f̂ is.

Assume that f : X ×TopB K −→ Y is continuous and let x0 ∈ X , (C,O,Ω) be an elementary
open subset of mapB(K,Y ) and assume that f̂(x0) ∈ (C,O,Ω). Then f({x0} ×TopB C) ⊂ O. By the
fibrewise tube Lemma 6.12, there exists an open neighborhood U of x0 such that f(U ×TopB C) ⊂ O.
Define V = U ∩XΩ. Then f̂(V ) ∈ (C,O,Ω). It follows that f̂ is continuous.

Conversely, assume that f̂ : X −→ mapB(K,Y ) is continuous. By Proposition 6.14, the evaluation
map

ev : mapB(K,Y )×TopB K −→ Y

is continuous. Therefore f which is the composite

X ×TopB K
̂f×TopB

1K−−−−−−→ mapB(K,Y )×TopB K
ev−→ Y (14)

is continuous.

Proposition 6.16. Assume that B is T1. Let K,Z ∈ TopB with K fibrewise compact fibrewise Haus-
dorff and let mapB(K,Z) be the exponential object defined by (12). If Z is fibrewise T1, then so is
mapB(K,Z).

Proof.

• Step 1: K is the fibrewise space Bb defined by Example 6.13, b ∈ B.

B is T1 and the fibre Zb is closed T1-subspace of Z. Then by Example 6.13, mapB(B
b, Z) is a

fibrewise T1-subspace.

• Step 2: The general case.

Let γ ∈ mapB(K,Z). we need to show that {γ} is closed in mapB(K,Z). Let b = p(γ), where
p is the projection of the fibrewise space mapB(K,Z). Then γ ∈ Top(Kb, Zb). For each x ∈ Kb,
define

fx : Bb −→ K

to be the fibrewise map given by fx(b) = x and let

mapB(fx, Z) : mapB(K,Z) −→ mapB(B
b, Z)
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be the fibrewise map induced by fx. Furthermore, let γx ∈ Top({b}, Zb) to be the map given by
γx(b) = γ(x). Then γx ∈ mapB(B

b, Z). We have

{γ} =
⋂

x∈Kb

mapB(fx, Z)
−1({γx}).

By Step 1, {γ} is closed in mapB(K,Z).

Remark 6.17. Let K,Z ∈ TopB with K fibrewise compact, fibrewise Hausdorff and Z fibrewise Haus-
dorff. Then the exponential space mapB(K,Z) is not in general fibrewise Hausdorff even if Z is Haus-
dorff (not just fibrewise Hausdorff) and B is T1.

7 Fibrewise weak and k-Hausdorfifications

Our objective in this section is to prove that if B is T1, then the subcategories of fibrewise weak
Hausdorff spaces and fibrewise k-Hausdorff spaces are reflective subcategories of TopB . We adopt a
definition of fibrewise weak Hausdorff spaces that is seemingly weaker than that of James [24, Definition
1.1]. Our definition has the advantage that it agrees with the ordinary definition of weak Hausdorff spaces
when B is reduced to a point (Strickland, [37, Definition 1.2]).

Definition 7.1.

1. A fibrewise space X over B is said to be fibrewise weak Hausdorff if for each open set Ω of B, each
fibrewise compact, fibrewise Hausdorff space K over Ω and each fibrewise map α : K −→ XΩ,
the image α(K) is closed in XΩ.

2. The subcategory of TopB whose objects are the weak Hausdorff spaces is denoted by hwTopB .

Proposition 7.2. A fibrewise Hausdorff space is fibrewise weak Hausdorff.

Proof. Let X be a fibrewise Hausdorff space, Ω open in B, K a fibrewise compact, fibrewise Hausdorff
space over Ω and u : K −→ XΩ a continuous fibrewise map. By Proposition 6.7, u(K) is closed in XΩ.
Hence X is weak Hausdorff.

Proposition 7.3. Let f : X −→ Y be an injective, continuous fibrewise map with Y fibrewise weak
Hausdorff. Then X is fibrewise weak Hausdorff. In particular, a subspace of a fibrewise weak Hausdorff
space is fibrewise weak Hausdorff.

Proof. Clear.

Proposition 7.4. Assume that the base space B is a T1-space. Then every fibrewise weak Hausdorff
space over B is fibrewise T1.

Proof. Let X be a fibrewise weak Hausdorff space over B and let x ∈ X . B is T1, thus the fibrewise
subspace {x} of X is fibrewise compact, fibrewise Hausdorff space. X is weak Hausdorff, thus {x} is
closed in X and X is T1.
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Proposition 7.5. Assume that the base space B is a T1-space. Let u be a fibrewise continuous map from
a fibrewise compact, fibrewise Hausdorff space K to a fibrewise weak Hausdorff space X . Then:

1. The map u : K −→ X is proper.

2. The subspace u(K) is a closed, fibrewise Hausdorff subspace of X .

Proof.

1. We use the characterization of proper maps given by Theorem 6.2: Let C be a closed subset of
K. C is fibrewise compact, fibrewise Hausdorff space over B, X is weak Hausdorff thus u(C) is
closed. u is then a closed map. B is T1, by Proposition 7.4, X is T1. Let x ∈ X and b = p(x)

where p is the projection of X on B. The subset {x} is closed in X , thus u−1(x) is closed in the
compact space Xb. It follows that u−1(x) is compact. Therefore u is proper.

2. The map u is proper, thus u(K) is closed. By Proposition 7.3, the subspace of a fibrewise weak
Hausdorff space is fibrewise weak Hausdorff. We therefore may assume without loss of generalities
that u is onto. By the first point, u is proper, thus by Proposition 6.3, the map

u×TopB u : K ×TopB K −→ X ×TopB X

is proper. K is fibrewise Hausdorff, therefore by Proposition 6.5, the diagonal Δ(K) of K is
closed in K ×TopB K. It follows that Δ(X) = u×TopB u(K ×TopB K) is closed in X ×TopB X . By
Proposition 6.5, X is fibrewise Hausdorff.

Proposition 7.6. Assume that the base space B is T1 and let (Xi)i∈I be a family of fibrewise weak

Hausdorff spaces indexed by a (small) set I . Then
i∈I∏
TopB

Xi is fibrewise weak Hausdorff.

Proof. Let X =
i∈I∏
TopB

Xi and p : X −→ B the projection of X on B.

• Step 1: LetK be a fibrewise compact, fibrewise Hausdorff space overB, u : K −→ X a continuous
fibrewise map, ui : K −→ Xi the i-component of u and Ki = ui(K), i ∈ I . Each Ki is closed

and by Proposition 7.5.2, each Ki is a fibrewise Hausdorff subspace of Xi. It follows that
i∈I∏
TopB

Ki

is closed, fibrewise Hausdorff subspace of X . By Proposition 6.7, u(K) is closed in
i∈I∏
TopB

Ki. Thus

u(K) is closed in X .

• Step 2: Let Ω be an open subset of B, K a fibrewise compact, fibrewise Hausdorff space over Ω,

Y = XΩ and u : K −→ Y a continuous, fibrewise map. Define Yi = p−1
i (Ω). Then Y =

i∈I∏
TopΩ

Yi.

By Proposition 7.3, each Yi is weak Hausdorff, thus by Step 1, u(K) is closed in Y . It follows that
i∈I∏
TopB

Xi is weak Hausdorff.
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Theorem 7.7. Assume that the base spaceB is T1. Then the category hwTopB is a reflective subcategory
of TopB . In particular, hwTop is bicomplete.

Proof. This follows from Theorem 5.1, Proposition 7.3 and Proposition 7.6.

k-Hausdorff spaces are defined by Rezk in [35, Section 4]. We here introduce the notion of fibrewise
k-Hausdorff spaces.

Definition 7.8.

1. A fibrewise space X over B is said to be fibrewise k-Hausdorff if for each open set Ω of B, each
fibrewise compact, fibrewise Hausdorff space K over Ω and each continuous fibrewise map u :

K −→ XΩ ×TopΩ XΩ, the inverse image by u of the diagonal of XΩ is closed in K.

2. The subcategory of TopB whose objects are the fibrewise k-Hausdorff spaces is denoted by hkTopB.

By Proposition 6.5, a fibrewise Hausdorff space is fibrewise k-Hausdorff. The product in TopB of
fibrewise k-Hausdorff spaces is fibrewise k-Hausdorff. Similarly, a subobject of a fibrewise k-Hausdorff
spaces is fibrewise k-Hausdorff space. We can apply Theorem 5.1 to get the following result.

Proposition 7.9. Assume that the base space B is a T1-space. The subcategory hkTopB of TopB is
reflective. In particular, hkTopB is bicomplete.

The next result generalizes that of Rezk [35, Proposition 11.2].

Proposition 7.10. Assume that the base space B is a T1-space. Then hwTopB is a reflective subcategory
of hkTopB.

Proof. In the light of Theorem 7.7, we just need to prove that hwTopB is a subcategory of hkTopB . Let
X be a fibrewise weak Hausdorff space.

• Step 1: Let f : K −→ X ×TopB X be a continuous, fibrewise map, where K is fibrewise compact,
fibrewise Hausdorff space. Let f1 and f2 be the components of the map f . Define K1 = f1(K),
K2 = f2(K) and L = K1 ∪ K2. The subspace L of X is the image of the continuous, fibrewise
map f1

∐
TopB

f2 : K
∐

TopB
K −→ X . The space K

∐
TopB

K is fibrewise compact fibrewise
Hausdorff, thus L is closed and by Proposition 7.5.2, L is fibrewise Hausdorff. f factors through
L×TopB L as follows

K X ×TopB X

L×TopB L

f

g j

where g : K −→ L×TopB L is continuous, fibrewise map and j is the inclusion map. Let ΔX and
ΔL be the diagonals of X and L respectively. By Proposition 6.5, ΔL is closed in L×TopB L, thus

f−1(ΔX) = g−1(j−1(ΔX)) = g−1(ΔL)

is closed in K.
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• Step 2: Let Ω be open in B, K a fibrewise compact, fibrewise Hausdorff space over Ω and u :

K −→ XΩ ×TopΩ XΩ a continuous, fibrewise map. X is fibrewise weak Hausdorff, by Proposition
7.3, XΩ is fibrewise weak Hausdorff. Therefore by Step 1, u(K) is closed in XΩ ×TopΩ XΩ. It
follows that X is k-Hausdorff.

Remark 7.11. A space X ∈ Top is weak Hausdorff (resp. k-Hausdorff) if it corresponds, under the iso-
morphism P of (10) to a fibrewise weak Hausdorff (resp. k-Hausdorff) space over Pt. The subcategory
of Top of such spaces is reflective and is denoted by hwTop (resp. hkTop)

8 Left Kan extendable subcategories of TopB

It is well known that any subcategory of Top containing a nonempty space has a coreflective hull ([20,
Theorem 12], [18, Proposition 2.17] and [19, page 283]). In this section, we prove that any subcategory
of TopB , which is suitable in the sense of the definition below, has a strong coreflective hull.

Definition 8.1. A subcategory W of TopB is said to be suitable if for every b ∈ B, there exists a fibrewise
topological space E(b) in W such that{

E(b)b �= ∅
E(b)c = ∅ for all c �= b

(15)

where E(b)c is the fibre of E(b) over c ∈ B.

Let W be a suitable subcategory of TopB (See Definition 8.1). For X ∈ TopB , let

JX : W/X −→ TopB (16)

be the functor which takes an arrow V → X to its domain V,

|JX | : W/X −→ Set|B| (17)

its underlying functor as defined by (71) and

P|B| : Set|B| −→ Set

the functor defined by (61). For (V σ−→ X) ∈ W/X , define a map

λσ : |V | −→ |X|
v �→ |σ| (v)

The maps λσ define a cone

P|B| |JX | λ
=⇒ |X| (18)

• Let V σ−→ X , V ′ σ′−→ X be in W/X , pσ and pσ′ the projections of the fibrewise spaces V and V ′

and v ∈ V , v′ ∈ V ′. The fact that W is suitable implies that λσ(v) = λσ′(v′) iff the objects (σ, v)
and (σ′, v′) of

∫
P|B| |JX | are in the same connected component.
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• Let x0 ∈ |X| and let b0 = |pX | (x0), where pX : X −→ B is the projection of the fibrewise space
X over B. Let E(b0) be as in (15) and define σ0 : E(b0) −→ X to be the fibrewise map given by
λσ0(e) = x0 for all e ∈ E(b0). Then σ0 ∈ W/X and x0 ∈ λσ0(E(b0)).

Therefore by Remark B.4.1.(c), the cone P|B| |JX | λ
=⇒ |X| given by (18) is a colimiting cone. By

Remark B.4.2, |JX | has a colimit. Therefore by Lemma C.3, JX has a colimit whose underlying set is
|X| and whose topology is the final topology defined by the functions P|B|λσ = |PB(σ)| : |V | −→ |X|,
σ ∈ W/X .

This proves that the inclusion functor W J
↪→ TopB has a density comonad (L, ε, δ) satisfying |L(X)| =

|X|, ∀X ∈ TopB . Furthermore, the underlying map |εX | of the counit εX : L(X) −→ X of the
subcategory W of TopB is just the identity map 1|X|. In particular, εX is monic and by Theorem 3.6, we
have the following result.

Theorem 8.2. Let W be a suitable subcategory of TopB. Then:

1. The subcategory W is left Kan extendable in TopB .

2. The coreflector TopB
ω−→ Wl[TopB] takes a fibrewise topological space X to the fibrewise topo-

logical space ω(X) having the same underlying set as X and whose topology is the final topology

induced by the functions |V | |PB(σ)|−−−−→ |X|, σ ∈ W/X .

3. A fibrewise topological space X over B is W-generated iff X has the final topology defined by all
continuous fibrewise maps V → X , where V is a fibrewise space in W .

Example 8.3. For b ∈ B, let Bb be the fibrewise subspace of B defined by Example 6.13. Let D be the
subcategory of TopB whose objects are the fibrewise spaces Bb, b ∈ B. Then D is a suitable subcategory
of TopB . It is then left Kan extendable and Dl[TopB] is precisely the subcategory DisB of TopB of discrete
fibrewise spaces over B.

A subcategory W of Top is said to be suitable if it corresponds, under the isomorphism P of (10) to
a suitable subcategory of TopB. That is, if W contains a nonempty space. By substituting pt for B, one
partially recovers a result of Herrlich and Strecker [18, Proposition 2.17].

Corollary 8.4. Let W be a suitable subcategory of Top. Then:

1. W is left Kan extendable in Top.

2. The coreflector Top ω−→ Wl[Top] takes a topological spaceX to the topological space ω(X) having
the same underlying set as X and whose topology is the final topology induced by the functions

|V | |σ|−→ |X|, σ ∈ W/X .

3. A topological space X is W-generated iff X has the final topology defined by all continuous maps
V −→ X, V ∈ W .

Let W be a suitable subcategory of TopB . For b ∈ B, let E(b) in W be as in (15) and let Bb to
be as defined in Example 8.3. Bb is a retract of E(b). By Lemma 1.6, Bb is W-generated. Therefore
by Example 8.3 and Corollary 3.9.1, every discrete fibrewise space is W-generated and we have the
following.
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Lemma 8.5. Let W be a suitable subcategory of TopB . Then every discrete fibrewise space over B is
W-generated.

Proposition 8.6. Let W be a suitable subcategory of TopB . Then:

1. The fibrewise quotient of a W-generated fibrewise space is W-generated.

2. A fibrewise space is W-generated iff it is the fibrewise quotient of a coproduct of spaces in W .

Proof.

1. Let X be a W-generated fibrewise space and ∼ a fibrewise equivalence relation on |X|. Let R the
discrete topological space whose underlying set is the graph of the equivalence relation ∼. The
space R is a fibrewise space over B. The fibrewise quotient quotient space X/ ∼ is the coequalizer
in TopB

R X X/ ∼
pr1

pr2

q

where pr1 and pr2 are induced by the projections on the first and second factors. The fibrewise
space X is W-generated and by Lemma 8.5, R is W-generated. Therefore by Proposition 3.4.1,
X/ ∼ is W-generated.

2. Straight forward generalization of the Escardó-Lawson proof of the same result when B is a one
point space [15, Lemma 3.2.(iv)].

Corollary 8.7. Let W be a suitable subcategory of TopB . Assume that a fibrewise space X is such that
every point of X has a neighborhood which is in W . Then X is W-generated.

Proof. For each x ∈ X , choose a neighborhood Vx of x which is in W and let ix : Vx −→ X be the
inclusion map. Then the map

x∈X∐
TopB

Vx −→ X (19)

whose restriction to Vx is ix, is a fibrewise quotient map. By Proposition 8.6.2, X is W-generated.

Proposition 8.8. Let topB be a reflective subcategory of TopB that is closed under subobjects and let W
be a suitable subcategory of topB . Then

1. The subcategory W of topB is left Kan extendable.

2. Wl[topB] = topB ∩Wl[TopB].

3. A reflection of TopB on topB induces a reflection of Wl[TopB] on Wl[topB].

4. A coreflection of TopB on Wl[TopB] induces a coreflection of top on Wl[top].

Proof. By Theorem 8.2.1, W is left Kan extendable subcategory of TopB . Let (L, ε, δ) be the density
comonad of the inclusion functor J : W −→ TopB. Let X0 ∈ topB , by Theorem 3.6, the map εX0 :

L(X0) −→ X0 is W-monic. The subcategory W of TopB is suitable, therefore εX0 is monic. The
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subcategory topB is closed under subobject, thus L(X0) ∈ topB . Therefore L(topB) ⊂ topB and then
the points 1-4 follow from Theorem 3.10.

9 Cartesian closed category of W-generated objects

Given a left Kan extendable subcategory W of a category C, In this section, we present sufficient
conditions for the category Wl[C] to be cartesian closed.

Assume that Y is an exponentiable object in a category C and let G : C −→ C be a right adjoint of the
functor . ×C Y : C −→ C. For Z ∈ C, the object G(Z) is called an exponential object and denoted by
ZY .

Examples 9.1.

1. In Top, the exponentiable objects are precisely the core compact spaces [12, 14, 23]. In particular,
locally compact Hausdorff spaces are exponentiable.

2. By Theorem 6.15, every fibrewise compact fibrewise Hausdorff space over B is exponentiable in
the category TopB.

3. By [34, Corollary 2.9], every local homeomorphism X −→ B is an exponentiable object of TopB.

Lemma 9.2. Let W be a left Kan extendable subcategory of a bicomplete category C. Assume that

1. Every object in W is exponentiable in C.

2. For every V,W ∈ W , the object V ×C W ∈ Wl[C].

Then for every V ∈ W and every Y ∈ Wl[C], V ×C Y is a W-generated object. That is V ×Wl[C] Y ∼=
V ×C Y .

Proof. Let V ∈ W and Y ∈ Wl[C]. By Corollary 3.5, there exists a functor F : K −→ C taking values
in W such that Y ∼= colimF . Define V ×C F to be the composite functor K F−→ C V×C−−→ C. Then

V ×C Y ∼= V ×C colimF
∼= colimV ×C F (because V is exponentiable in C)

By 2., V ×C F takes values in Wl[C]. Therefore, by Proposition 3.4.1, V ×C Y ∼= colimV ×C F is in
Wl[C]. Thus by Proposition 3.4.2, V ×Wl[C] Y exists and

V ×Wl[C] Y ∼= FL(V ×C Y ) ∼= V ×C Y.

Assume next that W and C are as in Lemma 9.2.

• For X,Y ∈ Wl[C], let JX : W/X −→ C be as defined by (3) and let JX ×C Y be the composite
functor

JX ×C Y : W/X
JX−→ C −×CY−−−→ C (20)
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By Proposition 3.4, Wl[C] is complete. For (V σ−→ X) ∈ W/X , define

θσ = σ ×Wl[C] 1Y : V ×C Y = V ×Wl[C] Y −→ X ×Wl[C] Y.

The maps θσ define a cone

JX ×C Y
θ

=⇒ X ×Wl[C] Y (21)

• Let
Hom(V, .) : C −→ C

be a right adjoint of the functor .×C V : C −→ C. For Y, Z ∈ Wl[C], define

SY
Z = Hom(JY (.), Z) : (W/Y )op −→ C

(V
σ−→ Y ) �−→ Hom(V, Z)

(22)

Definition 9.3. A left Kan extendable subcategory W of a bicomplete category C is said to be closeable
if

1. Every object in W is exponentiable in C.

2. For every V,W ∈ W , the object V ×C W ∈ Wl[C].
3. For all X,Y ∈ Wl[C], the cone JX ×C Y

θ
=⇒ X ×Wl[C] Y given by (21) is a colimiting cone.

4. For all Y, Z ∈ Wl[C], the functor SY
Z : (W/Y )op −→ C given by (22) has a limit.

For the remainder of this section, we assume that W is a closeable left Kan extendable subcategory of
a bicomplete category C. Define

hom(., .) : Wl[C]op ×Wl[C] −→ C (23)

by
hom(Y, Z) = limSY

Z = lim
(V

σ→Y )∈W|Y
Hom(V, Z)

Then for V ∈ W , the arrow-object 1V of W/V is terminal, it is therefore an initial object in the opposite
category (W/V )op. It follows that the limit of the functor

SV
Z : (W/V )op −→ C

is just SV
Z (1V ) which is Hom(V, Z). That is hom(V, Z) ∼= Hom(V, Z).

Lemma 9.4. Let V ∈ W and Y, Z ∈ Wl[C]. There exists a natural bijection

C(V, hom(Y, Z)) ∼= C(V ×C Y, Z).

Proof.

C(V, hom(Y, Z)) ∼= C(V, lim
(W

σ→Y )∈W|Y
Hom(W,Z))

∼= lim
(W

σ→Y )∈W|Y
C(V,Hom(W,Z))

∼= lim
(W

σ→Y )∈W|Y
C(V ×C W,Z)

∼= C( colim
(W

σ→Y )∈W|Y
V ×C W,Z)

∼= C(V ×C Y, Z) (because V is exponentiable in C)
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Let FL : C −→ Wl[C] be the coreflector. Define

(−)(−) : Wl[C]op ×Wl[C] −→ Wl[C]
(Y, Z) �→ ZY (24)

to be the composite functor

Wl[C]op ×Wl[C] hom−−→ C FL−→ Wl[C] (25)

Then for Y, Z ∈ Wl[C], ZY = FL(hom(Y, Z)).

Lemma 9.5. Let V ∈ W and Y, Z ∈ Wl[C]. There exists a natural bijection

Wl[C](V, ZY ) ∼= Wl[C](V ×Wl[C] Y, Z).

Proof.
Wl[C](V, ZY ) ∼= Wl[C](V, FL(hom(Y, Z)))

∼= C(V, hom(Y, Z)) (by Proposition 3.3)
∼= C(V ×C Y, Z) (by Lemma 9.4)
∼= C(V ×Wl[C] Y, Z) (by Lemma 9.2)
∼= Wl[C](V ×Wl[C] Y, Z)

Theorem 9.6. Wl[C] is cartesian closed with internal hom functor the functor

(−)(−) : Wl[C]op ×Wl[C] −→ Wl[C]
defined by (25).

Proof. Let X,Y, Z ∈ Wl[C].
Wl[C](X,ZY ) ∼= Wl[C]( colim

(V
σ→X)∈W|X

V, ZY )

∼= lim
(V

σ→X)∈W|X
Wl[C](V, ZY )

∼= lim
(V

σ→X)∈W|X
Wl[C](V ×Wl[C] Y, Z) (by Lemma 9.5)

∼= lim
(V

σ→X)∈W|X
Wl[C](JX ×C Y (σ), Z)

∼= Wl[C](colimJX ×C Y, Z)
∼= Wl[C](X ×Wl[C] Y, Z) (by Definition 9.3.3)

The next result is a generalization of that of Escardó-Lawson [15, Corollary 5.5].

Corollary 9.7. Let W ′ be another closeable, left Kan extendable subcategory of C which is contained in
W . Then the inclusion functor W ′

l [C] −→ Wl[C] preserves finite products.
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Proof. Let J ′ : W ′ −→ C be the inclusion functor, X,Y ∈ W ′
l [C] and J ′

X ×C Y : W ′/X −→ C be as in
(20). The functor J ′

X ×C Y factors through Wl[C] as follows:

W ′/X C

Wl[C]

J ′
X×CY

H U

X ×W ′
l [C] Y

∼= colimJ ′
X ×C Y (by Definition 9.3.3)

∼= colimUH
∼= colimH (by Proposition 3.4.1)
∼= X ×Wl[C] Y (by Lemma 9.2 and Theorem 9.6)

10 A fibrewise Day’s theorem

The aim of this section is to use the notion of Kan extendable subcategories to provide a fibrewise
version of Day’s theorem ([11, Theorem 3.1]). We begin with the following simple observation.

Remark 10.1. Let I F−→ C, J G−→ C and I P−→ J be functors. Assume that F and G have colimits
and let F α

=⇒ GP be a natural transformation.

I C

J
P

F

α
G

Then there exists a unique map h : colimF −→ colimG rendering commutative the diagram

F (i) GP (i)

colimF colimG

αi

h

for all i ∈ I .

Theorem 10.2. Assume that

1. The space B is a T1-space.

2. The subcategory W of TopB is suitable (See Definition 8.1).

3. Every fibrewise space in W is exponentiable as an object of TopB .

4. For every V,W ∈ W , the fibrewise space V ×TopB W is W-generated.

Then W is left Kan extendable. Moreover, Wl[TopB] is a cartesian closed subcategory of TopB.
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Proof. By Theorem 8.2, W is left Kan extendable. In the light of Theorem 9.6, we just need to prove
that conditions 3 and 4 of Definition 9.3 are satisfied.

Let X,Y ∈ Wl[TopB], JX : W/X −→ TopB be the functor defined by (16) and JX ×TopB Y :

W/X −→ TopB be the composite functor

JX ×TopB Y : W/X
JX−→ TopB

−×TopB
Y−−−−−→ TopB (26)

By Theorem 8.2, the functor JX has a colimit. Therefore by Lemma C.3, the functor |JX | : W/X −→
Set|B| has a colimit. Set|B| is cartesian closed, thus the functor − ×SetB |Y | : Set|B| −→ Set|B| is
left adjoint and preserves colimits. It follows that the composite of these last two functors, which
is

∣∣JX ×TopB Y
∣∣, has a colimit. Again by Lemma C.3, the functor JX ×TopB Y has a colimit. Let

JX×TopB
Y

λ
=⇒ X ×Wl[TopB] Y and JX ×TopB Y

μ
=⇒ colim(JX ×TopB Y ) be colimiting cones. Observe

that for (f : V −→ X ×TopB Y ) ∈ W/X ×TopB Y , the component λf of the cone λ along f is the map

λf = FL(f) : V −→ X ×Wl[TopB ] Y (27)

where FL : Top−→Wl[TopB] is the coreflector.

The cone θ : JX ×TopB Y =⇒ X ×Wl[TopB ] Y defined by (21) induces a map

colim(JX ×TopB Y )
θ̃−→ X ×Wl[TopB ] Y (28)

It is such that for every (V
σ−→ X) ∈ W/X , the diagram commutes

V ×TopB Y = V ×Wl[TopB ] Y

colim(JX ×TopB Y ) X ×Wl[TopB ] Y

μσ

σ×Wl[TopB ]1Y

θ̃

(29)

We need to prove that θ̃ is an isomorphism. Let P : W/X×TopB Y −→ W/X be the functor which takes
an object in W/X ×TopB Y , which is an arrow f = (σ, τ) : V −→ X ×TopB Y , to its first component
σ : V −→ X , which is an object in W/X . Define a natural transformation

JX×TopB
Y

α
=⇒ (JX ×TopB Y )P (30)

as follows:

For f = (σ, τ) : V −→ X ×TopB Y , αf = (1V , τ) : V −→ V ×TopB Y

W/X ×TopB Y TopB

W/X

P

JX×TopB
Y

α
JX×TopB

Y
(31)

The natural transformation α is such that the following diagram commutes

V

V ×TopB Y X ×TopB Y

fαf

σ×TopB
1Y

(32)
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Applying the coreflector FL : Top−→Wl[Top] to (32), we get a new commutative diagram

V

V ×TopB Y X ×Wl[TopB] Y

λfαf

σ×Wl[Top]
1Y

(33)

By Remark 10.1, the natural transformation JX×TopB
Y

α
=⇒ (JX ×TopB Y )P induces a map X ×Wl[TopB ]

Y
h−→ colimJX ×TopB Y . It is such that for every (f = (σ, τ) : V −→ X ×TopB Y ) ∈ W/X ×TopB Y ,

the diagram commutes

V V ×TopB Y

X ×Wl[TopB] Y colimJX ×TopB Y

αf

λf μσ

h

(34)

Gluing together diagrams (34) and (29) along their common edge, we get the following commutative
diagram

V V ×TopB Y

X ×Wl[TopB ] Y colimJX ×TopB Y X ×Wl[TopB] Y

αf

λf μσ

σ×Wl[Top]
1Y

h θ̃

(35)

By (33), (σ×Wl[TopB ]1Y )αf = λf . Therefore θ̃h = 1X×Wl[TopB ]Y . The maps θ̃ and h induce isomorphisms
on the underlying sets, therefore, we also have hθ̃ = 1colimJX×TopB

Y . It follows that θ̃ is an isomorphism
and condition 3 of Definition 9.3 is fulfilled. Condition 4 results from Lemma 10.4 below.

Lemma 10.3. Let W,Y ∈ TopB with W exponentiable in TopB and Hom(W, .) : TopB −→ TopB a
right adjoint of the functor W ×TopB . : TopB −→ TopB . Then

|Hom(W,Y )b| ∼= Top(Wb, Yb), ∀b ∈ B.

Proof. Let b ∈ B, Bb be the fibrewise space over B defined by Example 8.3. Then

|Hom(W,Y )b| ∼= TopB(B
b,Hom(W,Y )) ∼= TopB(B

b ×TopB W,Y ) ∼= Top(Wb, Yb).

Lemma 10.4. Assume that B is T1, W is a suitable subcategory of TopB and that every object of W is
exponentiable in TopB. Let Y, Z ∈ Wl[TopB], then the functor

SY
Z : W/Y −→ TopB

(W
σ−→ Y ) �−→ Hom(W,Z)

has a limit.

Proof. Let TY : W/Y −→ TopB be as in (16). Then colimTY ∼= Y . Let b ∈ B and let

πsb : Set|B| −→ Set and πtb : TopB −→ Top
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be the functors defined by (63) and (73) respectively.

Top(Yb, Zb) ∼= Top(πtb(colimTY ), Zb)
∼= Top(colimπtbTY , Zb) (by Lemma C.7.2)
∼= Top( colim

(W
σ→Y )∈W|Y

Wb, Zb)

∼= lim
(W

σ→Y )∈W|Y
Top(Wb, Zb)

∼= lim
(W

σ→Y )∈W|Y
|Hom(W,Z)|b (by Lemma 10.3)

∼= lim
(W

σ→Y )∈W|Y

∣∣SY
Z (σ)

∣∣
b

∼= lim πsb
∣∣SY

Z

∣∣
By Lemma B.3.1,

∣∣SY
Z

∣∣ has a limit. Therefore by Lemma 9.2, SY
Z has a limit.

Remark 10.5. Let W be as in Theorem 10.2 and

hom(., .) : Wl[TopB]
op ×Wl[TopB] −→ TopB (36)

be the functor defined by (23). Let Y, Z ∈ Wl[TopB].

|hom(Y, Z)|b ∼= πsb(|hom(Y, Z)|)
∼= πsb(

∣∣limSY
Z

∣∣)
∼= πsb(lim

∣∣SY
Z

∣∣) (| | preserves limits)
∼= lim πsb(

∣∣SY
Z

∣∣) (by Lemma B.3.1)

That is, lim πsb(
∣∣SY

Z

∣∣) ∼= Top(Yb, Zb). It follows from Lemma C.4.2 that hom(Y, Z) is the topological
space whose underlying set is

∐
b∈B

Top(Yb, Zb) and whose topology is the initial topology induced from

the spaces Hom(W,Z) by the maps
∐
b∈B

σb :
∐
b∈B

Top(Yb, Zb) −→
∐
b∈B

Top(Wb, Zb) = |Hom(W,Z)|, where

(W
σ→ Y ) ∈ W/Y .

By substituting Pt for B, Theorem 5.1 corresponds under the isomorphism P of (10) to the following
celebrated theorem of Day.

Corollary 10.6. ([11, Theorem 3.1])

Assume that:

1. The subcategory W of Top is suitable.

2. Every space in W is exponentiable as an object of Top.

3. For every V,W ∈ W , the space V ×Top W is W-generated.

Then W is left Kan extendable. Furthermore, Wl[Top] is a cartesian closed subcategory of Top.

Remark 10.7. Let W be as in Corollary 10.6 and Y, Z ∈ Wl[Top]. By Remark 10.5, lim
∣∣SY

Z

∣∣ exists
and is isomorphic to Top(Y, Z). Therefore by Lemma C.1, hom(Y, Z) = limSY

Z is the topological space
whose underlying set is Top(Y, Z) and whose topology is the initial topology defined by the functions

Top(Y, Z)
Top(σ,Z)−−−−−→ ∣∣SY

Z (σ)
∣∣ = Top(W,Z) (37)
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By (25), the exponential object ZY is given by ZY ∼= FL(hom(Y, Z)), where FL : Top −→ Wl[Top] is
the coreflector.

Examples 10.8. Let Comp be the subcategory of Top of compact Hausdorff spaces.

1. By Corollary 10.6, Comp is left Kan extendable and Compl[Top] is a cartesian closed coreflective
subcategory of Top. The Comp-generated objects of Top are precisely the compactly generated
spaces so that we recover ([11, Theorem 3.1] and [31, page 49]). Let kTop = Compl[Top] and
k : Top −→ kTop a coreflector. By Corollary 8.7, kTop contains every locally compact Hausdorff
space. We next give a description of the internal hom functor of kTop.

Recall that if K is compact Hausdorff and Z is any space, then the exponential object Hom(K,Z)

is the topological space whose underlying set is Top(K,Z) and whose topology is generated by the
subsets

(C, V ) = {f ∈ Top(K,Z) | f(C) ⊂ V } (38)

where C is closed in K and V is open in Z [17, Proposition A.14.].

For σ : K −→ Y continuous, the pull back of the subsets (C, V ) of Top(K,Z) by the maps

Top(Y, Z)
Top(σ,Z)−−−−−→ Top(K,Z) (39)

are the subsets

(C, σ, V ) = {f ∈ Top(Y, Z) | fσ(C) ⊂ V } (40)

where C is any compact Hausdorff space, V is any open subset of Z and σ : C −→ Z is any
continuous map. Let hom(Y, Z) be the topological space whose underlying set is Top(Y, Z) and
whose topology is generated by the subsets (C, σ, V ). By Remark 10.7, the exponential object ZY

in the cartesian closed category kTop is given by

ZY = k(hom(Y, Z)) (41)

2. Assume that B is Hausdorff. The category Comp/B is suitable. By Theorems 6.2 and 6.15, every
object in Comp/B is exponentiable in TopB. The base spaceB is Hausdorff, therefore the diagonal
of B is closed. It follows that the product, in TopB , of two objects of Comp/B is again in Comp/B.
By Theorem 10.2, the subcategory Comp/B of TopB is left Kan extendable and (Comp/B)l[TopB]

is cartesian closed. By Proposition C.2.2, (Comp/B)l[TopB] = kTop/B. Thus kTop/B is carte-
sian closed. We therefore recover a theorem of Booth ([6, Theorem 1.1]).

We next use the terminology developed in this paper to state another result due to Day and compare it
to Theorem 10.2.

Theorem 10.9. (Day [11, Theorem 3.4]).

Let E be a subcategory of Top such that:

1. The subcategory E contains the one point space.

2. Each object of E is an exponentiable object of Top.
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3. For any two fibrewise spaces p : V −→ B and q : W −→ B in E/B, the domain of the product
p×TopB q (in TopB) is closed in V ×Top W .

Then E/B is left Kan extendable in TopB and (E/B)l[TopB] is cartesian closed.

Theorems 10.2 and 10.9 do overlap. Actually, the proof of [6, Theorem 1.1] given in Example 10.8.2,
and which uses Theorem 10.2, can also be derived from Theorem 10.9. There are however some essential
differences:

1. The subcategory W of TopB in Theorem 10.2 has the form E/B in Theorem 10.9. Not any subcat-
egory of TopB has this form.

2. Objects of W in Theorem 10.2 are assumed to be exponentiable in TopB , while the objects of E in
Theorem 10.9 are assumed to be exponentiable in Top. For instance, Theorem 10.2 can be used to
prove that the category of fibrewise compactly generated spaces over a T1-space is cartesian closed
as shown in a latter section. Theorem 10.9 does not apply to prove this fact.

3. In Theorem 10.2, B is assumed to be T1. Theorem 10.9 uses a different separation condition
(condition 3).

Observe that Theorem 10.9 can be derived from Theorem 10.2 when B is Hausdorff.

11 The category kTopB of fibrewise compactly generated spaces

Our objective in this section is to prove that the category of fibrewise compactly generated spaces over
a T1-base is cartesian closed.

Let CompB be the subcategory of TopB of fibrewise compact, fibrewise Hausdorff spaces over B.

Proposition 11.1. Assume that B is a T1-space. Then CompB is left Kan extendable in TopB .

Proof. B is a T1-space. Thus CompB contains the fibrewise spaces Bb of Example 8.3 for all b ∈ B.
Therefore CompB is a suitable subcategory of TopB. By Theorem 8.2, CompB is left Kan extendable in
TopB.

Assume that B is T1. Then kTopB = (CompB)l[TopB] is a coreflective subcategory of TopB . Let

k : TopB −→ kTopB (42)

be a coreflector. An object in kTopB is called a fibrewise compactly generated space over B.

Proposition 11.2. Assume that B is a T1-space and let X be a fibrewise Hausdorff space over B. Then
the following properties are equivalent:
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1. The fibrewise space X is fibrewise compactly generated.

2. If a subset A of X is such that A ∩ K is open in K for any subspace K of X which is fibrewise
compact over B, then A is open in X .

3. If a subset A of X is such that A ∩K is closed in K for any subspace K of X which is fibrewise
compact over B, then A is closed in X .

Proof. Let u : K → X be a continuous fibrewise map with K fibrewise compact over B. By Proposition
6.7.2, u(K) is fibrewise compact fibrewise Hausdorff. The result then follows from Theorem 8.2.3.

Recall that if X is a fibrewise space over B with projection p : X −→ B and W ⊂ B, then the
subspace p−1(W ) of X is denoted by XW .

Definition 11.3. ([25, Definition 10.1])

Let X be fibrewise space over B. Then a subset A of X is said to be quasi-open (resp. quasi-closed) if
the following condition is satisfied:

For each point b ∈ B and each neighborhood V of b, there exists a neighborhood W ⊂ V of b such
that whenever K ⊂ XW is fibrewise compact over W , then A ∩K is open (resp. closed) in K.

Lemma 11.4. Let X be a topological space and (Vi)i∈I a family of subsets of X whose interiors cover
X . Then a subset A of X is open (resp.closed) iff A ∩ Vi is open (resp.closed) in Vi for all i ∈ I .

Proof. Clear.

Corollary 11.5. 4 Assume that B is a T1-space. Let X be a fibrewise compactly generated fibrewise
Hausdorff space over B. Then every quasi-open (resp. quasi-closed) subset of X is open (resp.closed).

Proof. The two claims concerning quasi-open sets and quasi-closed sets are equivalent. We therefore
only need to prove one of them.

Let O be a quasi-open subset of X . For each b ∈ B, there exists a neighborhood Wb of b such that
given any subspace K of XWb

which is fibrewise compact over Wb, O ∩K is open in K.

Let K be any subspace of X which is fibrewise compact over B and let b ∈ B. The fibrewise subspace
K ∩ XWb

is fibrewise compact over Wb. Therefore K ∩ XWb
∩ O is open in K ∩ XWb

. The family
(K ∩ XWb

)b∈B is a family of subsets of K whose interiors in K cover K. By Lemma 11.4, K ∩ O is
open in K. By Proposition 11.2, O is open in X .

Recall that a topological space X is said to be regular if for every x ∈ X and every neighborhood V of
x, there exists a closed neighborhood W of x which is contained in V . Observe that a regular T1-space
is Hausdorff.

4 I would like to greatly thank the first referee for explicitly stating this result to me.
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Proposition 11.6. Let B be a regular Hausdorff space and X a fibrewise Hausdorff space over B.
Assume that every quasi-open (resp.quasi-closed) subset of X is open (resp.closed) in X . Then X is
fibrewise compactly generated.

Proof. Again, we only need to prove the proposition under the quasi-open hypothesis.

Let O ⊂ X be such that O∩K is open in K for any subspace K of X which is fibrewise compact over
B. We want to show that O is quasi-open.

Let b ∈ B and let V be any neighborhood of b. The space B is regular. There exists a closed neighbor-
hood W of b which is contained in V . Let K be any subspace of XW which is fibrewise compact over
W . The subspace W of X is closed. By Theorem 6.2, K is fibrewise compact over B. Therefore O ∩K
is open in K. It follows that O is a quasi-open subset of X , and is therefore open in X . By Proposition
11.2, X is fibrewise compactly generated.

Remark 11.7. We next compare our notion of fibrewise compactly generated space to the equally named
notion considered by James in [25, Definition 10.3].

1. Our notion of fibrewise compactly generated spaces is defined only when the base space B is T1.

2. A fibrewise space X over B is fibrewise compactly generated in the sense of James iff:

(a) X is fibrewise Hausdorff.

(b) Every quasi-open subset of X is open, or equivalently, if every quasi-closed subset of X is
closed.

3. Assume that B is a T1-space and X is a fibrewise Hausdorff space over B.

(a) By Corollary 11.5, if X is fibrewise compactly generated in our sense, then it is so in the sense
of James.

(b) Assume further that B is a regular space. Then by Corollary 11.5 and Proposition 11.6, X is
fibrewise compactly generated in our sense iff it is so in the sense of James.

To fit our purposes, we give a definition of fibrewise locally compact spaces which is slightly stronger
than the one given by James in [25, Definition 3.12.].

Definition 11.8. A fibrewise space X over B is said to be fibrewise locally compact if for each x ∈ X ,
there exists a neighborhood K of x which is fibrewise compact over B.

Proposition 11.9. Assume that B is T1. Then every fibrewise locally compact, fibrewise Hausdorff space
is fibrewise compactly generated.

Proof. This is a consequence of Corollary 8.7.

Assume thatB is T1 and let LcompB be the subcategory of TopB of fibrewise locally compact, fibrewise
Hausdorff spaces. LcompB contains the suitable subcategory CompB of TopB . Therefore LcompB is
suitable. By Theorem 8.2, LcompB is left Kan extendable in TopB . Let lkTopB = (LcompB)l[TopB].
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Corollary 11.10. Assume that B is T1. Then lkTopB = kTopB.

Proof. CompB is a subcategory of LcompB and by Proposition 11.9, LcompB is a subcategory of kTopB.
Therefore by Corollary 3.9, lkTopB = kTopB .

The next result generalizes Proposition 11.9 and is a fibrewise version of [37, Proposition 2.6].

Proposition 11.11. Assume that B be is T1. Let X be a fibrewise locally compact fibrewise Hausdorff
space and Y a fibrewise compactly generated space. Then the product X×TopB Y is fibrewise compactly
generated.

Proof. This follows from Lemma 9.2 and Corollary 11.10.

Theorem 11.12. Assume that B is T1. Then kTopB is cartesian closed.

Proof. B is T1, thus CompB is a suitable subcategory of TopB . By Theorem 6.15, every fibrewise
compact fibrewise Hausdorff space is exponentiable in TopB . By Corollary 6.4, the product of two
fibrewise compact spaces is fibrewise compact. By Examples 5.2, the subcategory of fibrewise Hausdorff
spaces over B is reflective. Therefore by Proposition 1.5.1.(a), the product (in TopB) of two fibrewise
Hausdorff spaces is fibrewise Hausdorff. It follows from Theorem 10.2 that kTopB is cartesian closed.

We next give a description of the internal hom functor of kTopB .

Let K ∈ CompB and Z ∈ TopB. By Theorem 6.15, K is exponentiable in TopB and the exponential
object mapB(K,Z) is the topological space whose underlying set is

∐
b∈B

Top(Kb, Zb) and whose topology

is generated by the subsets

(C,O,Ω) =
∐
b∈Ω

{γ ∈ Top(Kb, Zb) | γ(Cb) ⊂ Ob} (43)

where C is closed in K, O is open in Z and Ω is open in B.

Let

hom(., .) : kTopopB × kTopB −→ TopB (44)

be the functor defined as in (36) and let Y, Z ∈ kTopB . By Remark 10.5, hom(Y, Z) is the topological
space whose underlying set is

∐
b∈B

Top(Yb, Zb) and whose topology is generated by the subsets

(σ,C,O,Ω) =
∐
b∈Ω

{γ ∈ Top(Yb, Zb) | γσb(Cb) ⊂ Ob} (45)

Where (σ : K −→ Y ) ∈ CompB/Y , C closed in K and O open in Z. By Theorem 9.6, the composite
functor

(.)(.) : kTopopB × kTopB
hom−−→ TopB

k−→ kTopB (46)

is an internal hom functor for the cartesian closed category kTopB , where TopB
k−→ kTopB is a core-

flector.
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Proposition 11.13. Assume that B is T1 and let topB be one of the reflective subcategories

fTopB, hTopB, uTopB, hkTopB or hwTopB. (47)

Then

1. CompB is left Kan extendable as a subcategory of topB .

2. (CompB)l[topB] = topB ∩ kTopB.

3. A reflection of TopB on topB induces a reflection of kTopB on Compl[topB].

4. The coreflection of TopB on kTopB given by Proposition 3.3 induces a coreflection of topB on
(CompB)l[topB].

Proof. topB is reflective, closed under subobjects subcategory of TopB containing the suitable subcate-
gory CompB . Properties 1-4 are then consequences of Proposition 8.8.

Corollary 11.14. Let top be one of the reflective subcategories

fTop, hTop, uTop, hcTop, hkTop or hwTop (48)

of Top. Then

1. Comp is left Kan extendable as a subcategory of top.

2. A reflection of Top on top induces a reflection of kTop on Compl[top].

3. Compl[top] = top ∩ kTop.

4. The coreflection ofTop on kTop given by Proposition 3.3 induces a coreflection of top onCompl[top].

Notation 11.15.

1. Let kfTopB = kTopB ∩ fTopB , khTopB = kTopB ∩ hTopB , kuTopB = kTopB ∩ uTopB and
khkTopB = kTopB ∩ hkTopB.

2. Similarly, let kfTop = kTop ∩ fTop, khTop = kTop ∩ hTop, kuTop = kTop ∩ uTop, khcTop =

kTop ∩ hcTop, khkTop = kTop ∩ hkTop and khwTop = kTop ∩ hwTop.

12 Cartesian closed subcategories of kTopB and kTop

In this section, we prove that kfTopB is a cartesian closed subcategory of kTopB . We also prove that
the subcategories kfTop, khTop, kuTop, khcTop, and khwTop are cartesian closed.

Proposition 12.1. Assume that B is T1. Then the reflective subcategory kfTopB of kTopB is cartesian
closed with internal hom functor induced by that of kTopB .
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Proof. By Proposition 11.13 , kfTopB is a reflective subcategory of kTopB. By Remark 1.12, we just
need to prove that if Y, Z ∈ kfTopB, then the exponential object ZY in kTopB defined by (46) is again
an object of kfTopB.

So let Y, Z ∈ kfTopB.

hom(Y, Z) ∼= lim
(K

σ→Y )∈CompB |Y
mapB(K,Z). (49)

By Proposition 6.16, the spaces mapB(K,Z) in (49) are T1. The subcategory fTopB is a reflective, by
Proposition 1.5.1.(a), hom(Y, Z) is T1. Let ε be the counit of the coreflection of TopB on kTopB . The
hom(Y, Z)-component

ZY = k(hom(Y, Z))
εhom(Y,Z)−−−−−→ hom(Y, Z) (50)

of ε is monic. The category fTopB is closed under subobjects, therefore ZY ∈ fTopB. The space
ZY ∈ kTopB , thus ZY ∈ kTopB ∩ fTopB = kfTopB.

Remark 12.2.

1. Assume that B be a T1-space. Let K be a fibrewise compact, fibrewise Hausdorff space and
Z ∈ khTopB. Then as observed in Remark 6.17, the space mapB(K,Z) may not be fibrewise
Hausdorff. Therefore the argument used in the proof of Proposition 12.1 cannot be used to prove
that khTopB is cartesian closed. In fact, this does not seem to be true.

2. Let K be the subcategory of TopB of compactly generated spaces in the sense of James ([25,
Definition 10.3] and Remark 11.7.2). Then K is cartesian with binary product ×′

B defined in ([25,
Page 83]. For any X ∈ K that is locally sliceable [25, Definition 1.16], the functor

−×′
B X : K −→ K

has a right adjoint which is the functor

map′
B(X,−) : K −→ K

defined in [25, Page 84]. This follows from the fact that the evaluation functions

map′
B(X,Z)×′

B X −→ Z

are continuous [25, Page 85] and that the adjoint of a continuous function

h : Y ×′
B X −→ Z

can be regarded as a continuous function

kB(ĥ) : Y −→ map′
B(X,Z)

as in [25, Lemma 10.16].

Proposition 12.3. [35, Proposition 11.4.]

Every compactly generated, k-Hausdorff space is weak Hausdorff. That is,

kTop ∩ hkTop ⊂ hwTop.
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Proof. Let X be a compactly generated k-Hausdorff space. Let f : K −→ X be continuous where K
is compact Hausdorff. Let g : L −→ X be a continuous map from a compact Hausdorff space L to X ,
f ×Top g : K×TopL −→ X ×TopX and prL : K×TopL −→ L is the projection. The map prL is closed,
therefore g−1(f(K)) = prL((f ×Top g)

−1)(ΔX) is closed. It follows that f(K) is closed and X is weak
Hausdorff.

Remark 12.4. Observe that by Propositions 12.3 and 7.10, khkTop = khwTop.

Proposition 12.5. The reflective subcategories

kfTop, khTop, kuTop, khcTop, khkTop and khwTop (51)

of kTop are cartesian closed with internal hom functor induced by that of kTop.

Proof. Let top be one of the categories in (51). By Proposition 11.14, top is a reflective subcategory
of kTop. By Remark 1.12, we just need to prove that if Y, Z ∈ top, then the exponential object ZY in
kTop defined by Examples 10.8.1 is again in top. So let Y, Z ∈ top. For y ∈ Y , the evaluation map
Evy : Z

Y −→ Z at y and is continuous.

• top = kfTop:
Let f0 ∈ ZY . Evy is continuous, Z is Fréchet, thus Ev−1

y (f(y)) is closed in ZY . It follows that
{f0} = ∩

y∈Y
Ev−1

y (f0(y)) is closed in ZY and ZY is a Fréchet space.

• top = khTop:
Let f, g ∈ khTop with f �= g. Let y0 ∈ Y be such that f(y0) �= g(y0). Let U, V be disjoint open
neighborhoods of f(y0) and g(y0). Then Ev−1

y0 (U) and Ev−1
y0 (V ) are disjoint open neighborhoods

of f and g. It follows that ZY is Hausdorff.

• top = kuTop:
Let f, g ∈ khTop with f �= g. Let y0 ∈ Y be such that f(y0) �= g(y0). Let A,B be disjoint closed
neighborhoods of f(y0) and g(y0). ThenEv−1

y0 (A) and Ev−1
y0 (B) are disjoint closed neighborhoods

of f and g. It follows that ZY is Urysohn.

• top = khcTop:
Let f, g ∈ khcTop with f �= g. Let y0 ∈ Y be such that f(y0) �= g(y0). Z is completely Hausdorff,
thus there exists a continuous fonction ψ : Z −→ [0, 1] such that ψ(f(y0)) = 0 and ψ(g(y0)) = 1.
Evy0 is continuous, thus ψEvy0 : ZY −→ [0, 1] is continuous. ψEvy0(f) = 0 and ψEvy0(g) = 1.
It follows that ZY is completely Hausdorff.

• top = khkTop = khwTop :

For a topological space X , let ΔX denote the diagonal of X . Let

f : K −→ ZY ×Top Z
Y

be a continuous map, where K is compact Hausdorff. Then

f−1(ΔZY ) =
⋂
y∈Y

((Evy ×Top Evy)f)
−1(ΔZ) (52)

is closed in K. It follows that ZY is k-closed.
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Proposition 12.6. Assume that B is Hausdorff. Then kTop/B ⊂ kTopB.

Proof. B is Hausdorff, by Theorem 6.2, Comp/B ⊂ CompB. By Examples 10.8.2, Comp/B is left Kan
extendable and (Comp/B)l[TopB] = kTop/B. It follows from Corollary 3.9 that

kTop/B = (Comp/B)l[TopB] ⊂ (CompB)l[TopB] = kTopB.

Proposition 12.7. Assume that B is locally compact Hausdorff space. Then kTopB = kTop/B.

Proof. By Proposition 12.6, kTop/B ⊂ kTopB .

Let (X
p−→ B) ∈ CompB , let x0 ∈ K, b0 = p(x0) and K a compact neighborhood of b0. Then

p−1(K) is a neighborhood of x0 which is Hausdorff. By Proposition 6.10, p−1(K) is compact. Therefore
(p−1(K)

p/−→ B) ∈ Comp/B. By Corollary 8.7, (X
p−→ B) ∈ (Comp/B)l[TopB]. It follows that

CompB ⊂ (Comp/B)l[TopB]. By Corollary 3.9,

kTopB = (CompB)l[TopB] ⊂ (Comp/B)l[TopB] = kTop/B.

Therefore kTopB = kTop/B.

Assume that B is locally compact Hausdorff. Then by Example 10.8.1, B ∈ kTop and by Proposition
12.7, the category kTopB is just the slice category kTop/B. The adjunction given by lemma A.2 yields
an adjunction

kTopB kTop.
PB

.×kTopB
(53)

13 Fibrewise sequential spaces

It is a well known fact that the category of sequential spaces is cartesian closed. We here show that this
fact extends to the fibrewise setting, provided that the base space B is Hausdorff.

Let N be the discrete space of non-negative integers, N+ = N ∪ {∞} its one point compactification.
Let NB be the subcategory of TopB whose objects are continuous maps N+ −→ B.

Proposition 13.1. The subcategory NB is a left Kan extendable in TopB.

Proof. The subcategory NB is suitable. By Theorem 8.2, NB is left Kan extendable.

We will call NB-generated objects fibrewise sequential spaces. The category (NB)l[TopB] of fibrewise
sequential spaces will be denoted by SeqB.

Remark 13.2. Let Seq be the subcategory of Top that corresponds to SeqB under the isomorphism P of
(10). Then N is a dense subcategory of Seq. The objects of Seq are called sequential spaces.

Proposition 13.3. A fibrewise topological space X −→ B is fibrewise sequential iff its domain X is a
sequential space.

© 2024 ISTE OpenScience – Published by ISTE Ltd. London, UK – openscience.fr Page | 69



Proof. This is a consequence of Corollary 3.5 and lemma A.2.1.

Proposition 13.4. Assume that B is T2. Then:

1. SeqB is cartesian closed.

2. SeqB is a coreflective subcategory of kTopB . Furthermore, the inclusion functor SeqB ↪→ kTopB
preserves finite products.

Proof.

1. The space B is T2. By Theorem 6.2, objects of NB are fibrewise compact, fibrewise Hausdorff. By
Theorem 6.15 they are exponentiable in TopB . The space N+ is a metric space. Let N+ p−→ B

and N+ q−→ B be two objects in NB . The domain of the product p ×TopB q is a subspace of
N+ ×Top N

+ and is therefore a metric space. It follows that the domain of p ×TopB q, which is a
subspace of N+ ×Top N

+, is a metric space. A metric space is sequential, thus by Proposition 13.3,
p×TopB q ∈ SeqB . By Theorem 10.2, SeqB is cartesian closed.

2. The base space B is T2, therefore NB is a subcategory of CompB. By Corollary 3.9.1, SeqB is
a coreflective subcategory of kTopB , and by Corollary 9.7, the inclusion functor SeqB ↪→ kTopB
preserves finite products.

Remark 13.5.

1. Assume that B is a sequential space. Then by Proposition 13.3, SeqB is just the slice category
Seq/B and the adjunction given by Lemma A.2.2 yields an adjunction

SeqB Seq.
PB

.×SeqB
(54)

2. Let s : Top −→ Seq be a coreflector. Then the functor SeqB −→ Seqs(B) which takes a fibrewise

sequential space X
p−→ B to X

s(p)−→ s(B) is an isomorphism of categories.

3. By the previous points, for any topological space B, the functor PB : SeqB −→ Seq is left adjoint.
Its right adjoint takes a sequential space X to the fibrewise sequential space X ×Seq s(B) whose
projection is the composite map

X ×Seq s(B)
pr−→ s(B)

εB−→ B,

where s : Top −→ Seq is a coreflector and εB is theB-component of the counit ε of the coreflection
of Top on Seq.

14 Fibrewise Alexandroff spaces

The category of Alexandroff space is known to be equivalent to the cartesian category of preorders
and is therefore cartesian closed (Escardó, Lawson [15, Examples (2), page 114]). Our objective in this
section is to extend this fact to the fibrewise setting.
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For b ∈ B, let
πtb : TopB −→ Top

be the functor which takes a fibrewise space over B to its fibre over b as defined by (73), and let

ib : Top −→ TopB

be the functor which takes a space X to the fibrewise space whose domain is X and whose projection
X −→ B is constant at b.

Lemma 14.1. Let b ∈ B. Then

1. The functor ib is left adjoint to πtb.

2. Assume that {b} is closed in B. Then πtb is left adjoint to the functor

map(Bb, ib(.)) : Top −→ TopB
Y �−→ mapB(B

b, ib(Y )).
(55)

where Bb is the fibrewise space defined by Example 8.3.

Proof.

1. Let X ∈ Top and Y ∈ TopB . Then TopB(ib(X), Y ) ∼= Top(X, πtb(Y )).

2. Let X ∈ TopB and Y ∈ Top. Then

Top(πtb(X), Y ) ∼= Top(Xb, Y )
∼= TopB(X ×TopB B

b, ib(Y ))
∼= TopB(X,mapB(B

b, ib(Y ))) (by Theorem 6.15)

Proposition 14.2. Let E ∈ Top be an exponentiable space and let b ∈ B be such that {b} is closed.
Then ib(E) is an exponentiable object of TopB .

Proof. Let
(.)E : Top −→ Top

be a right adjoint of the functor
.×Top E : Top −→ Top

and let X,Y ∈ TopB. We have

X ×TopB ib(E) = ib(π
t
b(X)×Top E).

Therefore

TopB(X ×TopB ib(E), Y ) ∼= TopB(ib(π
t
b(X)×Top E), Y )

∼= Top(πtb(X)×Top E, Yb) (by Lemma 14.1.1)
∼= Top(πtb(X), Y E

b )
∼= TopB(X,mapB(B

b, ib(Y
E
b ))) (by Lemma 14.1.2)

Thus ib(E) is exponentiable in TopB .
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The Sierpinski space is the topological space denoted by S, whose underlying set is {0, 1} and whose
set of open sets is O(S) = {∅, {1},S}. Let Sier be the subcategory of Top having S as its unique object
and SierB the subcategory of TopB whose objects are all continuous maps S → B.

Proposition 14.3. SierB is a left Kan extendable subcategory of TopB .

Proof. SierB is a suitable subcategory of TopB . By Theorem 8.2, SierB is left Kan extendable.

The subcategory Sier of Top corresponds to the subcategory Sierpt of Toppt under the isomorphism P

of (10). We therefore have the following.

Corollary 14.4. Sier is left Kan extendable subcategory in Top.

Proposition 14.5. A fibrewise topological space X −→ B is SierB-generated iff its domain X is Sier-
generated.

Proof. This is a consequence of Proposition 3.3.1 and lemma A.2.1.

Recall that an Alexandroff space is a topological space in which arbitrary intersections of open subsets
are open. Equivalently, an Alexandroff space is a topological space for which arbitrary unions of closed
subsets are closed. Let Alex be the subcategory of Top of Alexandroff spaces. A finite topological space
has only finitely many open sets, and is therefore an Alexandroff space.

Let B be a subset of an Alexandroff space X and let B denote the topological closure of B. The
subspace

⋃
b∈B

{b} is a closed subset of X containing B. It follows that B =
⋃
b∈B

{b}.

We next provide a simple proof of the following result which is given (without proof) in [15, Examples
(2), page 114].

Proposition 14.6. A topological spaceX is Sier-generated iff it is an Alexandroff space. That is Sierl[Top] =
Alex.

Proof. Let X be a Sier-generated topological space, (Oi)i∈I a family of open sets in X and f : S −→ X

a continuous map. Then f−1(
⋂
i∈I
Oi) =

⋂
i∈I
f−1(Oi) which open in S since S is an Alexandroff space. By

Corollary 8.4.2,
⋂
i∈I
Oi is open in X and X is an Alexandroff space. Conversely, assume that X is an

Alexandroff space. Let B ⊂ X be such that f−1(B) is closed for every continuous map f : S −→ X

and let a ∈ B. There exists b ∈ B such that a ∈ {b}. If a = b then a ∈ B, if a �= b, define g : S −→ X

by g(0) = a and g(1) = b. Then

g({1}) = g(S) = {a, b} ⊂ {b} ⊂ g({1})
Therefore g is continuous and g−1(B) is a closed subset of S containing 1. It follows that g−1(B) = S,
in particular, a = g(0) ∈ B and B is closed in X . By Corollary 8.4.2, X is Sier-generated.

It follows that (SierB)l[TopB] is the subcategory AlexB of fibrewise spaces X → B whose domain X
is an Alexandroff space. Objects of AlexB are called fibrewise Alexandroff spaces over B.
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Corollary 14.7.

1. Alex is a coreflective subcategory of Top containing Sier as a dense subcategory.

2. AlexB is a coreflective subcategory of TopB containing SierB as a dense subcategory.

Proof. This follows from Proposition 14.6, Proposition 3.3, Proposition 3.3.1 and Proposition 14.5.

We next generalize [15, Lemma 4.6.].

Proposition 14.8.

1. The Sierpinski space S is sequential.

2. The category Alex is a coreflective subcategory of Seq.

3. The category AlexB is a coreflective subcategory of SeqB .

Proof. Define q : N+ −→ S by q(∞) = 0 and q(n) = 1 for all n ∈ N. The map q is a quotient map,
thus by Proposition 8.6.1, S is sequential. By Corollary 3.9, Alex is a coreflective subcategory of Seq.
Similarly, AlexB is a coreflective subcategory of SeqB .

Proposition 14.9.

1. The subcategory Alex of Top is cartesian closed.

2. If B is T1, then the subcategory AlexB of TopB is cartesian closed.

Proof. We just need to prove 2.

Being finite, S is a core-compact space. It is therefore an exponentiable object of Top. Let S
p−→ B

be continuous. Assume the space B is T1, therefore p is constant. By Proposition 14.2, S
p−→ B is

an exponentiable object of TopB . The product in TopB of two fibrewise Sierpinski spaces is a fibrewise
Alexandroff space. By Theorem 10.2, AlexB is cartesian closed.

Remark 14.10.

1. Assume that B is an Alexandroff space. Then AlexB is just the slice category Alex/B and the
adjunction given by Lemma A.2.2 yields an adjunction

AlexB Alex.
PB

.×AlexB
(56)

2. Let a : Top −→ Alex be a coreflector. Then the functor AlexB −→ Alexa(B) which takes a fibrewise

Alexandroff space X
p−→ B to X

a(p)−→ a(B) is an isomorphism of categories.
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3. By the previous two points, for any topological space B, the functor PB : AlexB −→ Alex is
left adjoint. Its right adjoint takes an Alexandroff space X to the fibrewise Alexandroff space
X ×Alex a(B) with projection the composite

X ×Alex a(B)
pr−→ a(B)

εB−→ B.

Where a : Top −→ Alex is a coreflector and εB is the B-component of the counit ε of the of the
coreflection of Top on Sier.

Appendices

A Limits in a slice category

The aim of this section is to prove that if C is a bicomplete category and b ∈ C, then the slice category
C/b of C over b is bicomplete.

Let F : A −→ C an G : B −→ C be two functors. The comma category F/G is defined to be
the category whose objects are arrows F (a) α−→ G(b) and whose morphisms from F (a)

α−→ G(b)

to F (a′) α′
−→ G(b′) are pairs of morphisms (f, g) ∈ A(a, a′) ×Set B(b, b′) rendering commutative the

diagram

F (a) F (a′)

G(b) G(b′)

α

F (f)

α′

G(g)

(57)

We have functors

P : F/G −→ A and Q : F/G −→ B (58)

defined as follows: if F (a) α−→ G(b) ∈ F/G, then P (α) = a and Q(α) = b. If (f, g) is a morphism

from F (a)
α−→ G(b) to F (a′) α′

−→ G(b′) as in (57), then P ((f, g)) = f and Q((f, g)) = g.

Notations A.1. Let F : A −→ C an G : B −→ C be two functors.

1. If A is a subcategory of C and F : A −→ C is the inclusion functor, then F/G is also denoted by
A/G.

2. If B is a subcategory of C and G : B −→ C is the inclusion functor, then F/G is also denoted by
F/B.

3. If A,B are subcategories of C and F : A −→ C, G : B −→ C are the inclusion functors, then F/G
is denoted by A/B.

4. If A has just one object ∗ and just one morphisms id∗, then F/G is denoted by c/G where c = F (∗).
If further B = C and G is the identity functor, then c/G is called the slice category under c and is
denoted by c/C.
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5. If B has just one object ∗ and just one morphisms id∗, then F/G is denoted by F/c where c = G(∗).
If further A = C and F is the identity functor, then F/c is called the slice category over c and is
denoted by C/c. Observe that this notation is consistent with the one previously used.

Let C be category, b ∈ C, C/b the slice category of C over b and define

Pb : C/b −→ C (59)

to be the functor which takes an arrow-object c→ b to its domain c.

Lemma A.2.

1. The functor Pb creates colimits. In particular, if C is cocomplete, then so is C/b.
2. Assume that the categorical product c ×C b exists for every c ∈ C, then Pb is left adjoint. In

particular Pb preserves colimits.

Proof.

1. This follows from the dual of a straightforward generalization of [32, Lemma, page 121].

2. The functor C −→ C/b which takes an object c ∈ C to the arrow c×C b→ b is a right adjoint of Pb.
Thus Pb preserves colimits.

Let Cat be the category of small categories. A poset carries a category structure in the standard way.
Thus the ordinal numbers 1 = {0} and 2 = {0, 1} may be viewed as small categories. The small category
1 is a terminal object in Cat. The cone I	 of I ∈ Cat is defined in [36, Exercice 3.5.iv] to be the pushout
in Cat:

I 1

I ×Cat 2 I	
�

∗

i1

Let i be the composite functor I i0
↪→ I ×Cat 2 → I	. Then i : I ↪→ I	 is fully faithful and I may be

viewed as a full subcategory of I	. Furthermore

1. The category I	 contains one more object than I , it is denoted by ∗.

2. The set I	(i, ∗) contains precisely one morphism denoted by σi, ∀i ∈ I .

3. The set I	(∗, ∗) contains solely the identity morphism.

4. The set I	(∗, i) is empty, ∀i ∈ I .
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Let X : I −→ C/b be any functor. Define X	 : I	 −→ C to be the unique functor satisfying the
following properties:

1. The functor X	 extends PbX over the category I	. That is the following diagram commutes

I C/b

I	 C

X

Pbi

X�

2. X	(∗) = b.

3. X	(σi) is the arrow X(i) in C, i ∈ I .

Then one has the following result.

Lemma A.3.

1. The functor X has a limit if and only if X	 has a limit. Furthermore, a limiting cone l λ
=⇒ X	

induces a limiting cone from λ∗ : l −→ b to X , where λ∗ is the ∗-component of the cone λ.

2. If C is complete, then so is C/b.

Proof. Clear.

Examples A.4. Assume that C is complete

1. Let x σ−→ b, y
τ−→ b ∈ C/b, p1 : x×C y −→ x, p2 : x×C y −→ y be the projections and let

e x×C y bi
σp1

τp2

be the equalizer (in C) of the maps σp1 and τp2. The diagram

e y

x b

p2i

p1i

�
τ

σ

is a pullback diagram. By Lemma A.3, the composite σp1i = τp2i : e −→ b is the product of the
objects σ and τ of C/b.

2. Using generalized equalizers, the previous example may be extended to the case where one has a
family of arrow-objects xi

σi−→ b of C/b indexed be a small set I .
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B Limits in a slice category of sets

The aim of this section is to establish certain properties of limits and colimits in a slice category of sets.

The category Set of (small) sets is a bicomplete category. For X,Y, Z ∈ Set, there is a natural isomor-
phism

Set(X ×Set Y, Z) ∼= Set(X, Set(Y, Z)) (60)

so that Set is cartesian closed.

Let E ∈ Set. The slice category of Set over E is denoted by SetE. An object of SetE is called a set
over E. It consists of a set X together with a function p : X −→ E called projection. A set X

p−→ E

over E is often identified with its domain X . Let

PE : SetE −→ Set (61)

be the functor defined as in (59).

Proposition B.1.

1. The category SetE is bicomplete.

2. The functor PE creates and preserves colimits.

Proof. This follows from Lemma A.2, Lemma A.3 and the fact that Set is bicomplete.

Let F ⊂ E, Js
F : F → E the inclusion map and

Js,∗
F : SetE → SetF (62)

the functor given by pulling back along the inclusion map Js
F .

Lemma B.2. Let F ⊂ E. Then the functor Js,∗
F : SetE −→ SetF preserves both limits and colimits.

Proof. Clearly, Js,∗
F is at once a right adjoint and a left adjoint. Therefore it preserves both limits and

colimits.

Let e ∈ E. For X ∈ SetE, define the fibre of X over e to be the set Xe = p−1(e), where p is the
projection of the set X over E. One has a functor

πse : SetE −→ Set (63)

defined as follows: For X ∈ SetE , πse(X) = Xe and for f ∈ SetE(X,Y ), πse(f) is the map fe : Xe −→
Ye induced by f .

Lemma B.3.

1. The functors πse, e ∈ E, preserve limits and a functor X : I −→ SetE has a limit iff the composite
functor πseX has a limit for all e ∈ E.
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2. The functors πse, e ∈ E, preserve colimits and a functor X : I −→ SetE has a colimit iff the
composite functor πseX has a colimit for all e ∈ E.

Proof. By Lemma B.2, πse preserves limits and colimits. The other properties are easy to verify.

Let X,Y ∈ SetE . Then

PE(X) ∼=
e∈E∐
Set

Xe (64)

and a map f : X −→ Y can be written as

f =
e∈E∐
Set

fe :
e∈E∐
Set

Xe −→
e∈E∐
Set

Ye (65)

so that one has a natural isomorphism

SetE(X,Y ) ∼= SetE(
e∈E∐
Set

Xe,

e∈E∐
Set

Ye) ∼=
e∈E∏
Set

Set(Xe, Ye) (66)

Define

(.)(.) : SetopE × SetE −→ SetE

(Y, Z) �→ ZY =
e∈E∐
Set

Set(Ye, Ze)
(67)

That is, ZY is the set over E whose fibre over e ∈ E is Set(Ye, Ze).

Let X,Y, Z ∈ SetE . By Lemma B.3.1, (X ×SetE Y )e = Xe ×Set Ye. Therefore

SetE(X ×SetE Y, Z)
∼=

e∈E∏
Set

Set(Xe ×Set Ye, Ze) (by (66))

∼=
e∈E∏
Set

Set(Xe, Set(Ye, Ze)) (by (60))

∼= SetE(X,Z
Y ) (by (66) and (67))

It follows that SetE is cartesian closed.

Remark B.4. (Category of elements, [36, Definition 2.4.1.] and [27, (3.35)])

1. Let Set be the category of (small) sets and T : I −→ Set be a functor. Recall that

(a) The category
∫
T of elements of T is the category whose objects are pairs (i, s) where i ∈ I

and s ∈ T (i) and morphisms from (i, s) to (j, t) are morphisms f from i to j satisfying
T (f)(s) = t.

(b) The functor T has a colimit iff the connected components of the category
∫
T form an object

π0(
∫
T ) ∈ Set, i.e. a small set . In this case, the cone T λ

=⇒ π0(
∫
T ) whose i-component is

the map
λi : T (i) −→ π0(

∫
T )

t �→ [(i, t)]

is a colimiting cone.
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(c) It follows from the previous point that if a cone T λ
=⇒ S from the functor T to S ∈ Set is such

that:

• ∀s ∈ T (i), ∀t ∈ T (j), λi(s) = λj(t) ⇔ the objects (i, s) and (j, t) of
∫
T are in the same

connected component.
•
⋃

i∈I λi(T (i)) = S.

Then λ is a colimiting cone.

2. Assume now that T : I −→ SetE is a functor. Let pi : T (i) −→ E be the projection of the set
T (i) over E and PE : SetE −→ Set the functor given by (61). Then by Lemma A.2 and Remark
B.4.1.(b), T has a colimit iff the connected components of the category

∫
PET form a (small) set.

When this is the case, then the colimit of T is

π0(
∫
PET ) −→ E

[(i, t)] �→ pi(t)

Lemma B.5. Let X : I −→ Set be a functor and Y ∈ Set. Assume that X λ
=⇒ Y is a colimiting cone

and let Y ′ ⊂ Y . Then the functor X induces a functor X ′ : I −→ Set given by X ′(i) = λ−1
i (Y ′), i ∈ I .

Furthermore, the cone λ′ : X ′ =⇒ Y ′ induced by λ is a colimiting cone.

Proof. Clearly, the functorX induces a functorX ′ : I −→ Set and the cone λ induces a cone λ′ : X ′ =⇒
Y ′. Two objects (i1, x1) and (i2, x2) in the category

∫
X ′ are in the same path-component iff they are

in the same path-component of the category
∫
X . That is iff λ′i1(x1) = λi1(x1) = λi2(x2) = λ′i2(x2).

Furthermore,
⋃

i∈I λ
′
i(X

′(i)) = Y ′. By Remark B.4.3, λ′ is a colimiting cone.

C Limits in the category of fibrewise spaces

Define | | : Top −→ Set to be the underlying set functor. |.| has a left adjoint which is the discrete
functor

Disc : Set −→ Top

and has a right adjoint which is the codiscrete functor

Codisc : Set −→ Top

In particular, the underlying functor |.| preserves limits and colimits.

For any functor T : I −→ Top, define the underlying set functor of T to be the composite functor

|T | : I T−→ Top
|.|−→ Set. (68)

Lemma C.1. Let I be a (not necessarily small) category and T : I −→ Top a functor. Then:

1. T has a limit (resp. colimit) iff |T | has a limit (resp. colimit).

2. Suppose that |T | has a limit (resp. colimit). Then limT (resp. colimT ) is the topological space
whose underlying set is lim |T | (resp. colim |T |) and whose topology is the initial (resp. final)
topology defined by the limiting (resp. colimiting) cone components lim |T | −→ |T (i)| (resp.
|T (i)| −→ colim |T |).
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Proof. Clear.

It follows from the above lemma that functor |.| : Top −→ Set preserves and lifts limits and colimits.
Set is bicomplete, then so is Top.

The slice category of Top over B is denoted by TopB . An object of TopB is called a fibrewise topo-
logical space over B. It consists of a topological space X together with a continuous map p : X −→ B

called projection. A fibrewise topological space p : X −→ B is often identified with its domain X . Let

PB : TopB −→ Top (69)

be the functor defined as in (59).

Proposition C.2.

1. TopB is bicomplete.

2. The functor PB creates and preserves colimits.

Proof. This follows from Lemma A.2 and Lemma A.3.

If X is a fibrewise space over B, then |X| is a set over |B| so that one has an underlying “fibrewise”
set functor

|.| : TopB −→ Set|B|.

The functor |.| has a left adjoint which is the ordinary discrete functor

Disc : Set|B| −→ TopB,

and a right adjoint which is the codiscrete functor

Codisc : Set|B| −→ TopB.

It associates to a fibrewise set S over |B| the topological space whose underlying set is S and whose
topology is the initial topology defined by the projection p : S −→ |B| of the fibrewise set S on |B|.

It follows that the underlying fibrewise set functor |.| preserves both limits and colimits. We have a
commutative diagram of colimit preserving functors

TopB Set|B|

Top Set

|.|

PB P|B|

|.|

(70)

where PB and P|B| are the functors defined by (69) and (61) respectively. For any functor T : I −→
TopB, define the underlying functor of T to be the composite functor

|T | : I T−→ TopB
|.|−→ Set|B| (71)
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Lemma C.3. Let I be a (not necessarily small) category and T : I −→ TopB a functor.

1. If one of the functors T , |T |, PBT , |PBT | = P|B| |T | has a colimit, then so do the others.

2. Assume that T has a colimit, then PB(colimT ) is the topological space whose underlying set is
colim |PBT | and whose topology is the final topology induced by the components of the colimiting
cone |PBT | ⇒ colim |PBT |.

Proof.

1. The functors in diagram (70) are left adjoints, they are therefore colimit preserving, we just need to
prove that if |PBT | has a colimit, then so is T . Assume then that |PBT | has a colimit. By Lemma
C.1, PBT has a colimit. PB creates colimits, therefore T has a colimit as desired.

2. This follows immediately the first property, Lemma C.1 and the fact that PB preserves colimits.

Lemma C.4. Let I be a (not necessarily small) category and T : I −→ TopB a functor. Then:

1. T has a limit iff |T | has a limit.

2. Assume that S is a set over |B| and S λ⇒ |T | is a limiting cone. Let L be the topological space
whose underlying set is S and whose topology is the initial topology defined by the components of
λ. Then L is a fibrewise space over B and the cone L⇒ T induced by λ is a limiting cone.

Proof. These are consequences of Lemmas A.3 and C.1.

Lemma C.5. Let X : I −→ Top be a functor and Y ∈ Top. Assume that X λ
=⇒ Y is a colimiting cone

and let Y ′ ⊂ Y . Let X ′ : I −→ Top be the functor given by X ′(i) = λ−1
i (Y ′), i ∈ I . Then the cone

λ′ : X ′ =⇒ Y ′ induced by λ is a colimiting cone, provided that Y ′ is either open or closed in Y .

Proof. By Lemma B.5, the cone |λ′| : |X ′| =⇒ |Y ′| is a colimiting cone in Set. Assume that Y ′ is
closed, then X ′(i) is closed in X(i), all i ∈ I . Let C ⊂ Y ′ such that λ′−1

i (C) is closed in X ′(i) for all
i ∈ I . The subset λ−1

i (C) = λ′−1
i (C) is closed in X(i) for all i ∈ I . By Lemma C.1, C is closed Y and

therefore C is closed Y ′. It follows that Y ′ has the final topology defined by the components of the cone
|λ′|. By Lemma C.1, λ′ is a colimiting cone. A similar argument can be used in the case where Y ′ is
open.

Let A ⊂ B, J t
A : A→ B the inclusion map and

J t,∗
A : TopB −→ TopA (72)

The functor given by pulling back along the inclusion map J t
A.

Lemma C.6.

1. The functor J t,∗
A preserves limits.

2. The functor J t,∗
A preserves colimits provided that A is either open or closed in B.
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Proof. The first point results from the fact that J t,∗
A is a right adjoint. The second is a consequence of

Lemma C.5 and Proposition C.2.

Let b ∈ B. For X ∈ TopB , define the fibre of X over b to be the subspace Xb = p−1(b), where p is the
projection of the fibrewise space X . One has a functor

πtb : TopB −→ Top (73)

defined as follows: For X ∈ TopB, πtb(X) = Xb and for f ∈ TopB(X,Y ), πtb(f) is the map fb : Xb −→
Yb is the map induced by f .

Lemma C.7. Let X : I −→ TopB be a functor.

1. The functors πtb, b ∈ B, preserve limits and the functor X has a limit iff the composite functor πtbX
has a limit for all b ∈ B.

2. Assume B is a T1-space. Then the functors πtb, b ∈ B, preserve colimits and the functor X has a
colimit iff the composite functor πtbX has a colimit for all b ∈ B.

Proof.

1. By Lemma C.6.1, the functors πtb preserve limits. The fact that πtbX has a limit for all b ∈ B implies
that X has a limit is a consequence of Lemmas C.1.1, B.3.1 and C.4.1.

2. By Lemma C.6.2, the functors πtb preserve colimits. The fact that πtbX has a colimit for all b ∈ B

implies that X has a colimit is a consequence of Lemmas C.1.1, B.3.2 and C.3.1.
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