exit

Mathematics   > Home   > Advances in Pure and Applied Mathematics   > Forthcoming papers   > Article

[Forthcoming] General Decay Of A Nonlinear Viscoelastic Wave: Equation With Boundary Dissipation

[Forthcoming] Déficience D’une Onde Viscoélastique Non Linéaire : Équation Avec Dissipation Aux Limites


Amel Boudiaf
University of setif
Algeria

Salah Drabla
University of setif
Algeria



Published on 14 September 2020   DOI :

Abstract

Résumé

Keywords

Mots-clés

In this work we establish a general decay rate for a nonlinear viscoelastic wave equation with boundary dissipation where the relaxation function satisfies $$$g^{\prime }\left( t\right) \leq -\xi \left( t\right) g^{p} % \left( t\right) , t\geq 0, 1\leq p\leq \frac{3}{2}.$$$ This work generalizes and improves earlier results in the literature.

In this work we establish a general decay rate for a nonlinear viscoelastic wave equation with boundary dissipation where the relaxation function satisfies $$$g^{\prime }\left( t\right) \leq -\xi \left( t\right) g^{p} % \left( t\right) , t\geq 0, 1\leq p\leq \frac{3}{2}.$$$ This work generalizes and improves earlier results in the literature.

Viscoelastic General decay Relaxation function Dissipation Wave equation

Viscoelastic General decay Relaxation function Dissipation Wave equation